Anna Levochkina;Isita Chatterjee;Pegah Darvehi;Halima Giovanna Ahmad;Pasquale Mastrovito;Davide Massarotti;Domenico Montemurro;Francesco Tafuri;Giovanni Piero Pepe;Kevin P. O'Brien;Martina Esposito
{"title":"基于开源频域模拟器的约瑟夫森行波参量放大器磁链可调谐性建模","authors":"Anna Levochkina;Isita Chatterjee;Pegah Darvehi;Halima Giovanna Ahmad;Pasquale Mastrovito;Davide Massarotti;Domenico Montemurro;Francesco Tafuri;Giovanni Piero Pepe;Kevin P. O'Brien;Martina Esposito","doi":"10.1109/TASC.2025.3552432","DOIUrl":null,"url":null,"abstract":"Josephson traveling wave parameteric amplifiers (JTWPAs) are integral parts of many experiments carried out in quantum technologies. Being composed of hundreds of Josephson junction-based unit cells, such devices exhibit complex nonlinear behavior that typically cannot be fully explained with simple analytical models, thus necessitating the use of numerical simulators. A very useful characteristic of JTWPAs is the possibility of being biased by an external magnetic flux, allowing in-situ control of the nonlinearity. It is, therefore, very desirable for numerical simulators to support this feature. Open-source numerical tools that allow to model JTWPA flux biasing, such as <italic>WRSPICE</i> or <italic>PSCAN2</i>, are based on time-domain approaches, which typically require long simulation times to get accurate results. In this work, we model the gain performance in a prototypical flux-tunable JTWPA by using <italic>JosephsonCircuits.jl</i>, a recently developed frequency-domain open-source numerical simulator, which has the benefit of simulation times about 10 000 faster than time-domain methods. By comparing the numerical and experimental results, we validate this approach for modeling the flux dependent behavior of JTWPAs.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 3","pages":"1-6"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Flux Tunability in Josephson Traveling Wave Parameteric Amplifiers With an Open-Source Frequency-Domain Simulator\",\"authors\":\"Anna Levochkina;Isita Chatterjee;Pegah Darvehi;Halima Giovanna Ahmad;Pasquale Mastrovito;Davide Massarotti;Domenico Montemurro;Francesco Tafuri;Giovanni Piero Pepe;Kevin P. O'Brien;Martina Esposito\",\"doi\":\"10.1109/TASC.2025.3552432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Josephson traveling wave parameteric amplifiers (JTWPAs) are integral parts of many experiments carried out in quantum technologies. Being composed of hundreds of Josephson junction-based unit cells, such devices exhibit complex nonlinear behavior that typically cannot be fully explained with simple analytical models, thus necessitating the use of numerical simulators. A very useful characteristic of JTWPAs is the possibility of being biased by an external magnetic flux, allowing in-situ control of the nonlinearity. It is, therefore, very desirable for numerical simulators to support this feature. Open-source numerical tools that allow to model JTWPA flux biasing, such as <italic>WRSPICE</i> or <italic>PSCAN2</i>, are based on time-domain approaches, which typically require long simulation times to get accurate results. In this work, we model the gain performance in a prototypical flux-tunable JTWPA by using <italic>JosephsonCircuits.jl</i>, a recently developed frequency-domain open-source numerical simulator, which has the benefit of simulation times about 10 000 faster than time-domain methods. By comparing the numerical and experimental results, we validate this approach for modeling the flux dependent behavior of JTWPAs.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930774/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10930774/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling Flux Tunability in Josephson Traveling Wave Parameteric Amplifiers With an Open-Source Frequency-Domain Simulator
Josephson traveling wave parameteric amplifiers (JTWPAs) are integral parts of many experiments carried out in quantum technologies. Being composed of hundreds of Josephson junction-based unit cells, such devices exhibit complex nonlinear behavior that typically cannot be fully explained with simple analytical models, thus necessitating the use of numerical simulators. A very useful characteristic of JTWPAs is the possibility of being biased by an external magnetic flux, allowing in-situ control of the nonlinearity. It is, therefore, very desirable for numerical simulators to support this feature. Open-source numerical tools that allow to model JTWPA flux biasing, such as WRSPICE or PSCAN2, are based on time-domain approaches, which typically require long simulation times to get accurate results. In this work, we model the gain performance in a prototypical flux-tunable JTWPA by using JosephsonCircuits.jl, a recently developed frequency-domain open-source numerical simulator, which has the benefit of simulation times about 10 000 faster than time-domain methods. By comparing the numerical and experimental results, we validate this approach for modeling the flux dependent behavior of JTWPAs.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.