自适应帧率分割视频SAR

Zhengyang Sun;Liwu Wen;Jinshan Ding
{"title":"自适应帧率分割视频SAR","authors":"Zhengyang Sun;Liwu Wen;Jinshan Ding","doi":"10.1109/TRS.2025.3553116","DOIUrl":null,"url":null,"abstract":"Video synthetic aperture radar (ViSAR) is a promising technology for the surveillance of ground-moving targets. Traditionally, ViSAR imaging and moving target tracking are performed sequentially, where high-frame-rate imaging is applied to the entire SAR scene. However, this approach generates redundant information that is often unnecessary for ViSAR applications. We propose a partitioned adaptive frame-rate (PAFR) ViSAR processing strategy, which adaptively partitions the SAR scene, applying high-frame-rate imaging to potential target regions and low frame rate to large static areas. An integrated imaging and tracking algorithm that synthesizes back-projection (BP) and track-before-detect (TBD) techniques has been derived for efficient bidirectional information exchange. BP imaging provides high-resolution measurements to refine tracking parameters, while TBD tracking offers predictive data to guide the adaptive partitioning of the imaging area. Additionally, we enhance the traditional dynamic programming-based TBD (DP-TBD) algorithm by incorporating the morphological features of target shadows, allowing for more accurate corrections and refinements of predicted states. This enhancement significantly improves both tracking accuracy and speed. The experimental results from airborne radar data have proven the capability of the proposed algorithm to achieve both efficient PAFR imaging and fast target tracking simultaneously, which paves the way for more potential applications in ViSAR.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"576-590"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Frame-Rate Partitioned Video SAR\",\"authors\":\"Zhengyang Sun;Liwu Wen;Jinshan Ding\",\"doi\":\"10.1109/TRS.2025.3553116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video synthetic aperture radar (ViSAR) is a promising technology for the surveillance of ground-moving targets. Traditionally, ViSAR imaging and moving target tracking are performed sequentially, where high-frame-rate imaging is applied to the entire SAR scene. However, this approach generates redundant information that is often unnecessary for ViSAR applications. We propose a partitioned adaptive frame-rate (PAFR) ViSAR processing strategy, which adaptively partitions the SAR scene, applying high-frame-rate imaging to potential target regions and low frame rate to large static areas. An integrated imaging and tracking algorithm that synthesizes back-projection (BP) and track-before-detect (TBD) techniques has been derived for efficient bidirectional information exchange. BP imaging provides high-resolution measurements to refine tracking parameters, while TBD tracking offers predictive data to guide the adaptive partitioning of the imaging area. Additionally, we enhance the traditional dynamic programming-based TBD (DP-TBD) algorithm by incorporating the morphological features of target shadows, allowing for more accurate corrections and refinements of predicted states. This enhancement significantly improves both tracking accuracy and speed. The experimental results from airborne radar data have proven the capability of the proposed algorithm to achieve both efficient PAFR imaging and fast target tracking simultaneously, which paves the way for more potential applications in ViSAR.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"576-590\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10935739/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10935739/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频合成孔径雷达(ViSAR)是一种很有前途的地面运动目标监视技术。传统上,ViSAR成像和运动目标跟踪是顺序进行的,其中高帧率成像应用于整个SAR场景。然而,这种方法产生了ViSAR应用程序通常不需要的冗余信息。提出了一种分割自适应帧率(PAFR)的SAR图像处理策略,该策略对SAR场景进行自适应分割,对潜在目标区域进行高帧率成像,对大面积静态区域进行低帧率成像。为了实现有效的双向信息交换,提出了一种综合了反投影(BP)和检测前跟踪(TBD)技术的综合成像和跟踪算法。BP成像提供高分辨率测量,以改进跟踪参数,而TBD跟踪提供预测数据,以指导成像区域的自适应划分。此外,我们通过结合目标阴影的形态学特征来改进传统的基于动态规划的TBD (DP-TBD)算法,允许更精确的校正和改进预测状态。这种增强显著提高了跟踪的准确性和速度。机载雷达数据的实验结果证明了该算法能够同时实现高效的PAFR成像和快速的目标跟踪,为该算法在ViSAR中的更多潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Frame-Rate Partitioned Video SAR
Video synthetic aperture radar (ViSAR) is a promising technology for the surveillance of ground-moving targets. Traditionally, ViSAR imaging and moving target tracking are performed sequentially, where high-frame-rate imaging is applied to the entire SAR scene. However, this approach generates redundant information that is often unnecessary for ViSAR applications. We propose a partitioned adaptive frame-rate (PAFR) ViSAR processing strategy, which adaptively partitions the SAR scene, applying high-frame-rate imaging to potential target regions and low frame rate to large static areas. An integrated imaging and tracking algorithm that synthesizes back-projection (BP) and track-before-detect (TBD) techniques has been derived for efficient bidirectional information exchange. BP imaging provides high-resolution measurements to refine tracking parameters, while TBD tracking offers predictive data to guide the adaptive partitioning of the imaging area. Additionally, we enhance the traditional dynamic programming-based TBD (DP-TBD) algorithm by incorporating the morphological features of target shadows, allowing for more accurate corrections and refinements of predicted states. This enhancement significantly improves both tracking accuracy and speed. The experimental results from airborne radar data have proven the capability of the proposed algorithm to achieve both efficient PAFR imaging and fast target tracking simultaneously, which paves the way for more potential applications in ViSAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信