利用地铁定位任务探索深度网络特征的简化极限

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jiajie Song;Ningfang Song;Jingchun Cheng;Xiaoxin Liu;Xiong Pan
{"title":"利用地铁定位任务探索深度网络特征的简化极限","authors":"Jiajie Song;Ningfang Song;Jingchun Cheng;Xiaoxin Liu;Xiong Pan","doi":"10.1109/LRA.2025.3555790","DOIUrl":null,"url":null,"abstract":"This paper addresses vision-based subway positioning, a significant yet challenging task due to the low-lighting and sparse-texture conditions in tunnels. Traditional features struggle with temporal correspondence. While deep network features are effective, their computational and storage demands make them unsuitable for on-board systems. We propose a simple-structured feature extractor, trained via a student-teacher distillation framework to inherit the powerful pattern mining and abstraction capabilities of deep networks. Our goal is to simplify deep network features for fixed-route applications like subway positioning, developing an on-board efficient feature extractor for practical applications. Specifically, we design a single-layer convolution operator as our student network. Through discriminability augmented distillation, we compress the feature extraction capabilities of the state-of-the-art SiLK into this compact model, achieving an optimal balance between descriptive power and computational efficiency. Our method achieves a model size of 2 KB and a processing speed of 1453 FPS, while maintaining high homography estimation accuracy comparable to those of deep network features. Extensive experiments on the vision-based subway positioning dataset show our method offers superior speed and deployability without losing accuracy.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4922-4929"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Simplification Limit of Deep Network Features With Subway Positioning Task\",\"authors\":\"Jiajie Song;Ningfang Song;Jingchun Cheng;Xiaoxin Liu;Xiong Pan\",\"doi\":\"10.1109/LRA.2025.3555790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses vision-based subway positioning, a significant yet challenging task due to the low-lighting and sparse-texture conditions in tunnels. Traditional features struggle with temporal correspondence. While deep network features are effective, their computational and storage demands make them unsuitable for on-board systems. We propose a simple-structured feature extractor, trained via a student-teacher distillation framework to inherit the powerful pattern mining and abstraction capabilities of deep networks. Our goal is to simplify deep network features for fixed-route applications like subway positioning, developing an on-board efficient feature extractor for practical applications. Specifically, we design a single-layer convolution operator as our student network. Through discriminability augmented distillation, we compress the feature extraction capabilities of the state-of-the-art SiLK into this compact model, achieving an optimal balance between descriptive power and computational efficiency. Our method achieves a model size of 2 KB and a processing speed of 1453 FPS, while maintaining high homography estimation accuracy comparable to those of deep network features. Extensive experiments on the vision-based subway positioning dataset show our method offers superior speed and deployability without losing accuracy.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"4922-4929\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945443/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945443/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于视觉的地铁定位,这是一项重要但具有挑战性的任务,因为隧道中光照不足,纹理稀疏。传统的特征与时间对应作斗争。虽然深度网络特性是有效的,但其计算和存储需求使其不适合车载系统。我们提出了一个结构简单的特征提取器,通过学生-教师蒸馏框架进行训练,以继承深度网络强大的模式挖掘和抽象能力。我们的目标是简化地铁定位等固定路线应用的深度网络特征,为实际应用开发一种高效的车载特征提取器。具体来说,我们设计了一个单层卷积算子作为我们的学生网络。通过判别增强蒸馏,我们将最先进的特征提取能力压缩到这个紧凑的模型中,实现了描述能力和计算效率之间的最佳平衡。该方法实现了2 KB的模型大小和1453 FPS的处理速度,同时保持了与深度网络特征相当的高单应性估计精度。在基于视觉的地铁定位数据集上进行的大量实验表明,我们的方法在不损失准确性的情况下具有优越的速度和可部署性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Simplification Limit of Deep Network Features With Subway Positioning Task
This paper addresses vision-based subway positioning, a significant yet challenging task due to the low-lighting and sparse-texture conditions in tunnels. Traditional features struggle with temporal correspondence. While deep network features are effective, their computational and storage demands make them unsuitable for on-board systems. We propose a simple-structured feature extractor, trained via a student-teacher distillation framework to inherit the powerful pattern mining and abstraction capabilities of deep networks. Our goal is to simplify deep network features for fixed-route applications like subway positioning, developing an on-board efficient feature extractor for practical applications. Specifically, we design a single-layer convolution operator as our student network. Through discriminability augmented distillation, we compress the feature extraction capabilities of the state-of-the-art SiLK into this compact model, achieving an optimal balance between descriptive power and computational efficiency. Our method achieves a model size of 2 KB and a processing speed of 1453 FPS, while maintaining high homography estimation accuracy comparable to those of deep network features. Extensive experiments on the vision-based subway positioning dataset show our method offers superior speed and deployability without losing accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信