非线性分数阶积分微分方程的Daftardar-Jafari多项式迭代法

Q1 Mathematics
Qasim Khan, Anthony Suen
{"title":"非线性分数阶积分微分方程的Daftardar-Jafari多项式迭代法","authors":"Qasim Khan,&nbsp;Anthony Suen","doi":"10.1016/j.padiff.2025.101167","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel approach called the Iterative Aboodh Transform Method (IATM) which utilizes Daftardar–Jafari polynomials for solving non-linear problems. Such method is employed to derive solutions for non-linear fractional partial integro-differential equations (FPIDEs). The key novelty of the suggested method is that it can be used for handling solutions of non-linear FPIDEs in a very simple and effective way. More precisely, we show that Daftardar–Jafari polynomials have simple calculations as compared to Adomian polynomials with higher accuracy. The results obtained within the Daftardar–Jafari polynomials are demonstrated with graphs and tables, and the IATM’s absolute error confirms the higher accuracy of the suggested method.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101167"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative procedure for non-linear fractional integro-differential equations via Daftardar–Jafari polynomials\",\"authors\":\"Qasim Khan,&nbsp;Anthony Suen\",\"doi\":\"10.1016/j.padiff.2025.101167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a novel approach called the Iterative Aboodh Transform Method (IATM) which utilizes Daftardar–Jafari polynomials for solving non-linear problems. Such method is employed to derive solutions for non-linear fractional partial integro-differential equations (FPIDEs). The key novelty of the suggested method is that it can be used for handling solutions of non-linear FPIDEs in a very simple and effective way. More precisely, we show that Daftardar–Jafari polynomials have simple calculations as compared to Adomian polynomials with higher accuracy. The results obtained within the Daftardar–Jafari polynomials are demonstrated with graphs and tables, and the IATM’s absolute error confirms the higher accuracy of the suggested method.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125000944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用Daftardar-Jafari多项式求解非线性问题的迭代Aboodh变换方法(IATM)。该方法用于求解非线性分数阶偏积分微分方程。该方法的关键新颖之处在于,它可以以一种非常简单有效的方式处理非线性fpga的解。更准确地说,我们证明了与Adomian多项式相比,Daftardar-Jafari多项式计算简单,精度更高。用图形和表格证明了在Daftardar-Jafari多项式内得到的结果,IATM的绝对误差证实了所建议方法的较高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative procedure for non-linear fractional integro-differential equations via Daftardar–Jafari polynomials
In this paper, we introduce a novel approach called the Iterative Aboodh Transform Method (IATM) which utilizes Daftardar–Jafari polynomials for solving non-linear problems. Such method is employed to derive solutions for non-linear fractional partial integro-differential equations (FPIDEs). The key novelty of the suggested method is that it can be used for handling solutions of non-linear FPIDEs in a very simple and effective way. More precisely, we show that Daftardar–Jafari polynomials have simple calculations as compared to Adomian polynomials with higher accuracy. The results obtained within the Daftardar–Jafari polynomials are demonstrated with graphs and tables, and the IATM’s absolute error confirms the higher accuracy of the suggested method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信