Cuiping Yang , Changhong Liu , Xuguang Xing , Xiaoyi Ma
{"title":"基于 Copula-Bayesian 模型预测中国气象干旱向农业干旱传播的风险和触发阈值","authors":"Cuiping Yang , Changhong Liu , Xuguang Xing , Xiaoyi Ma","doi":"10.1016/j.agwat.2025.109468","DOIUrl":null,"url":null,"abstract":"<div><div>Meteorological droughts are propagated through atmospheric and hydrological cycles, ultimately triggering agricultural droughts. Accurate prediction of future meteorological to agricultural drought propagation is essential for developing early warning systems and managing agricultural water resources. However, the thresholds at which meteorological drought induce agricultural drought remains unclear. In this study, a drought propagation threshold framework based on a Copula-Bayesian model was developed to estimate the propagation time, probability, and triggering thresholds of meteorological drought to agricultural drought in China under future scenarios. The results indicated that meteorological and agricultural drought indices were projected to exhibit declining trends in the future, suggesting the intensification of drought severity across China. The drought propagation time was expected to shorten by 1.6–3 months in the future. Furthermore, the conditional probability for the propagation of meteorological droughts of varying severity to agricultural droughts was projected to increase by 10.9–26.4 %. Southern China (SC) and the Yangtze River Basin (YRB) regions emerged as high-risk regions for drought propagation, where average conditional probabilities were 57.2–65.1 % and 49.1–57.4 %, respectively. The drought propagation thresholds were projected to increase in the future, indicating heightened vulnerability of agricultural droughts to meteorological droughts. The triggering thresholds for drought in SC (−0.99 to −0.87) and YRB (−1.20 to −0.94) were relatively high, where even mild meteorological droughts would induce moderate agricultural droughts in the future. By contrast, the predicted trigger thresholds were relatively low for the Northeast China Plain (−1.92 to −1.65) and North China Plain (−1.69 to −1.50). Across China, temperature emerged as the primary driver of changes in trigger thresholds, with its relative contribution estimated to be 43.1–47.2 %. Climate warming was projected to increase the future trigger thresholds in China. The findings assist policymakers in formulating effective agricultural management strategies to address future agricultural drought risks.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"313 ","pages":"Article 109468"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model\",\"authors\":\"Cuiping Yang , Changhong Liu , Xuguang Xing , Xiaoyi Ma\",\"doi\":\"10.1016/j.agwat.2025.109468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meteorological droughts are propagated through atmospheric and hydrological cycles, ultimately triggering agricultural droughts. Accurate prediction of future meteorological to agricultural drought propagation is essential for developing early warning systems and managing agricultural water resources. However, the thresholds at which meteorological drought induce agricultural drought remains unclear. In this study, a drought propagation threshold framework based on a Copula-Bayesian model was developed to estimate the propagation time, probability, and triggering thresholds of meteorological drought to agricultural drought in China under future scenarios. The results indicated that meteorological and agricultural drought indices were projected to exhibit declining trends in the future, suggesting the intensification of drought severity across China. The drought propagation time was expected to shorten by 1.6–3 months in the future. Furthermore, the conditional probability for the propagation of meteorological droughts of varying severity to agricultural droughts was projected to increase by 10.9–26.4 %. Southern China (SC) and the Yangtze River Basin (YRB) regions emerged as high-risk regions for drought propagation, where average conditional probabilities were 57.2–65.1 % and 49.1–57.4 %, respectively. The drought propagation thresholds were projected to increase in the future, indicating heightened vulnerability of agricultural droughts to meteorological droughts. The triggering thresholds for drought in SC (−0.99 to −0.87) and YRB (−1.20 to −0.94) were relatively high, where even mild meteorological droughts would induce moderate agricultural droughts in the future. By contrast, the predicted trigger thresholds were relatively low for the Northeast China Plain (−1.92 to −1.65) and North China Plain (−1.69 to −1.50). Across China, temperature emerged as the primary driver of changes in trigger thresholds, with its relative contribution estimated to be 43.1–47.2 %. Climate warming was projected to increase the future trigger thresholds in China. The findings assist policymakers in formulating effective agricultural management strategies to address future agricultural drought risks.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"313 \",\"pages\":\"Article 109468\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378377425001829\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425001829","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model
Meteorological droughts are propagated through atmospheric and hydrological cycles, ultimately triggering agricultural droughts. Accurate prediction of future meteorological to agricultural drought propagation is essential for developing early warning systems and managing agricultural water resources. However, the thresholds at which meteorological drought induce agricultural drought remains unclear. In this study, a drought propagation threshold framework based on a Copula-Bayesian model was developed to estimate the propagation time, probability, and triggering thresholds of meteorological drought to agricultural drought in China under future scenarios. The results indicated that meteorological and agricultural drought indices were projected to exhibit declining trends in the future, suggesting the intensification of drought severity across China. The drought propagation time was expected to shorten by 1.6–3 months in the future. Furthermore, the conditional probability for the propagation of meteorological droughts of varying severity to agricultural droughts was projected to increase by 10.9–26.4 %. Southern China (SC) and the Yangtze River Basin (YRB) regions emerged as high-risk regions for drought propagation, where average conditional probabilities were 57.2–65.1 % and 49.1–57.4 %, respectively. The drought propagation thresholds were projected to increase in the future, indicating heightened vulnerability of agricultural droughts to meteorological droughts. The triggering thresholds for drought in SC (−0.99 to −0.87) and YRB (−1.20 to −0.94) were relatively high, where even mild meteorological droughts would induce moderate agricultural droughts in the future. By contrast, the predicted trigger thresholds were relatively low for the Northeast China Plain (−1.92 to −1.65) and North China Plain (−1.69 to −1.50). Across China, temperature emerged as the primary driver of changes in trigger thresholds, with its relative contribution estimated to be 43.1–47.2 %. Climate warming was projected to increase the future trigger thresholds in China. The findings assist policymakers in formulating effective agricultural management strategies to address future agricultural drought risks.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.