Shenliang Yang , Alistair Speidel , Adam T. Clare , Chris Bennett , Xiaoliang Jin
{"title":"定向能沉积加工零件的残余应力预测","authors":"Shenliang Yang , Alistair Speidel , Adam T. Clare , Chris Bennett , Xiaoliang Jin","doi":"10.1016/j.addma.2025.104765","DOIUrl":null,"url":null,"abstract":"<div><div>The residual stress exhibited in post-machined metallic components fabricated by directed energy deposition (DED) determines their final mechanical performance and reliability in mission-critical applications. This study develops a numerical model to predict the final surface residual stress after the orthogonal cutting of DED-produced IN718, which integrates two critical factors: DED-induced initial residual stress states and microstructure properties. Using the developed modeling procedure, the penetration depth of post-machining into the initial residual stress distribution can be effectively quantified, which aligns with residual stress measurements through X-ray diffraction. The developed model is further employed to quantify the cumulative effects of initial residual stress states and grain size on cutting forces and final surface residual stress profiles. The results suggest that, under the given orthogonal cutting conditions of DED parts, variations in the initial residual stress states of the chip formation region have negligible effects on cutting forces. However, magnitudes of surface compressive residual stress in the longitudinal direction reduce by 21.8 %-52.3 % as the initial residual stress states shift from compressive-dominant to tensile-dominant, and decrease by 23.8 %-54.0 % as the built-in grain size (<em>d</em><sub><em>g</em>_<em>x</em></sub>) increases from 10 μm to 100 μm. With a comprehensive understanding of post-machining DED processes using this numerical modeling procedure, post-treatment techniques can now be tailored to achieve surface residual stress profiles on DED-generated or other additively manufactured metallic components to meet various industrial requirements.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"104 ","pages":"Article 104765"},"PeriodicalIF":10.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual stress prediction in machining of parts fabricated by directed energy deposition\",\"authors\":\"Shenliang Yang , Alistair Speidel , Adam T. Clare , Chris Bennett , Xiaoliang Jin\",\"doi\":\"10.1016/j.addma.2025.104765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The residual stress exhibited in post-machined metallic components fabricated by directed energy deposition (DED) determines their final mechanical performance and reliability in mission-critical applications. This study develops a numerical model to predict the final surface residual stress after the orthogonal cutting of DED-produced IN718, which integrates two critical factors: DED-induced initial residual stress states and microstructure properties. Using the developed modeling procedure, the penetration depth of post-machining into the initial residual stress distribution can be effectively quantified, which aligns with residual stress measurements through X-ray diffraction. The developed model is further employed to quantify the cumulative effects of initial residual stress states and grain size on cutting forces and final surface residual stress profiles. The results suggest that, under the given orthogonal cutting conditions of DED parts, variations in the initial residual stress states of the chip formation region have negligible effects on cutting forces. However, magnitudes of surface compressive residual stress in the longitudinal direction reduce by 21.8 %-52.3 % as the initial residual stress states shift from compressive-dominant to tensile-dominant, and decrease by 23.8 %-54.0 % as the built-in grain size (<em>d</em><sub><em>g</em>_<em>x</em></sub>) increases from 10 μm to 100 μm. With a comprehensive understanding of post-machining DED processes using this numerical modeling procedure, post-treatment techniques can now be tailored to achieve surface residual stress profiles on DED-generated or other additively manufactured metallic components to meet various industrial requirements.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"104 \",\"pages\":\"Article 104765\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425001290\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001290","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Residual stress prediction in machining of parts fabricated by directed energy deposition
The residual stress exhibited in post-machined metallic components fabricated by directed energy deposition (DED) determines their final mechanical performance and reliability in mission-critical applications. This study develops a numerical model to predict the final surface residual stress after the orthogonal cutting of DED-produced IN718, which integrates two critical factors: DED-induced initial residual stress states and microstructure properties. Using the developed modeling procedure, the penetration depth of post-machining into the initial residual stress distribution can be effectively quantified, which aligns with residual stress measurements through X-ray diffraction. The developed model is further employed to quantify the cumulative effects of initial residual stress states and grain size on cutting forces and final surface residual stress profiles. The results suggest that, under the given orthogonal cutting conditions of DED parts, variations in the initial residual stress states of the chip formation region have negligible effects on cutting forces. However, magnitudes of surface compressive residual stress in the longitudinal direction reduce by 21.8 %-52.3 % as the initial residual stress states shift from compressive-dominant to tensile-dominant, and decrease by 23.8 %-54.0 % as the built-in grain size (dg_x) increases from 10 μm to 100 μm. With a comprehensive understanding of post-machining DED processes using this numerical modeling procedure, post-treatment techniques can now be tailored to achieve surface residual stress profiles on DED-generated or other additively manufactured metallic components to meet various industrial requirements.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.