Ozlem Ceviz , Pinar Sadioglu , Sevil Sen , Vassilios G. Vassilakis
{"title":"一种新型的基于联邦学习的入侵识别系统,用于增强无人机的隐私和安全性","authors":"Ozlem Ceviz , Pinar Sadioglu , Sevil Sen , Vassilios G. Vassilakis","doi":"10.1016/j.iot.2025.101592","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks. Previous studies focused predominantly on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices. However, these approaches face challenges including computation and storage costs, along with a single point of failure risk, threatening data privacy and availability. The widespread dispersion of data across interconnected devices underscores the need for decentralized approaches. This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs. FL-IDS reduces computation and storage costs for both clients and the central server, which is crucial for resource-constrained UAVs. Operating in a decentralized manner, FL-IDS enables UAVs to collaboratively train a global intrusion detection model without sharing raw data, thus avoiding delay in decisions based on collected data, as is often the case with traditional methods. Experimental results demonstrate FL-IDS’s competitive performance with Central IDS (C-IDS) while mitigating privacy concerns, with the Bias Towards Specific Clients (BTSC) method further enhancing FL-IDS performance even at lower attacker ratios. Comparative analysis with traditional intrusion detection methods, including Local IDS (L-IDS), sheds light on the strengths of FL-IDS. This study significantly contributes to UAV security by introducing a privacy-aware, decentralized intrusion detection approach tailored to UAV networks. Moreover, by introducing a realistic dataset for FANETs and federated learning, our approach differs from others lacking high dynamism and 3D node movements or accurate federated data federations.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101592"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel federated learning-based IDS for enhancing UAVs privacy and security\",\"authors\":\"Ozlem Ceviz , Pinar Sadioglu , Sevil Sen , Vassilios G. Vassilakis\",\"doi\":\"10.1016/j.iot.2025.101592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks. Previous studies focused predominantly on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices. However, these approaches face challenges including computation and storage costs, along with a single point of failure risk, threatening data privacy and availability. The widespread dispersion of data across interconnected devices underscores the need for decentralized approaches. This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs. FL-IDS reduces computation and storage costs for both clients and the central server, which is crucial for resource-constrained UAVs. Operating in a decentralized manner, FL-IDS enables UAVs to collaboratively train a global intrusion detection model without sharing raw data, thus avoiding delay in decisions based on collected data, as is often the case with traditional methods. Experimental results demonstrate FL-IDS’s competitive performance with Central IDS (C-IDS) while mitigating privacy concerns, with the Bias Towards Specific Clients (BTSC) method further enhancing FL-IDS performance even at lower attacker ratios. Comparative analysis with traditional intrusion detection methods, including Local IDS (L-IDS), sheds light on the strengths of FL-IDS. This study significantly contributes to UAV security by introducing a privacy-aware, decentralized intrusion detection approach tailored to UAV networks. Moreover, by introducing a realistic dataset for FANETs and federated learning, our approach differs from others lacking high dynamism and 3D node movements or accurate federated data federations.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"31 \",\"pages\":\"Article 101592\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525001052\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001052","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel federated learning-based IDS for enhancing UAVs privacy and security
Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks. Previous studies focused predominantly on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices. However, these approaches face challenges including computation and storage costs, along with a single point of failure risk, threatening data privacy and availability. The widespread dispersion of data across interconnected devices underscores the need for decentralized approaches. This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs. FL-IDS reduces computation and storage costs for both clients and the central server, which is crucial for resource-constrained UAVs. Operating in a decentralized manner, FL-IDS enables UAVs to collaboratively train a global intrusion detection model without sharing raw data, thus avoiding delay in decisions based on collected data, as is often the case with traditional methods. Experimental results demonstrate FL-IDS’s competitive performance with Central IDS (C-IDS) while mitigating privacy concerns, with the Bias Towards Specific Clients (BTSC) method further enhancing FL-IDS performance even at lower attacker ratios. Comparative analysis with traditional intrusion detection methods, including Local IDS (L-IDS), sheds light on the strengths of FL-IDS. This study significantly contributes to UAV security by introducing a privacy-aware, decentralized intrusion detection approach tailored to UAV networks. Moreover, by introducing a realistic dataset for FANETs and federated learning, our approach differs from others lacking high dynamism and 3D node movements or accurate federated data federations.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.