{"title":"与多盘有关的商域的函数理论","authors":"Mainak Bhowmik , Poornendu Kumar","doi":"10.1016/j.jfa.2025.110978","DOIUrl":null,"url":null,"abstract":"<div><div>Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under certain polynomial maps <span><math><mi>θ</mi><mo>:</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. The main contributions of this paper are as follows:<ul><li><span>(1)</span><span><div>We show that the closed algebra generated by inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> forms a proper subalgebra of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>, the algebra of bounded holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(2)</span><span><div>The set of all rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is shown to be dense in the norm-unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.</div></span></li><li><span>(3)</span><span><div>As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are continuous in the closure of <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> by convex combinations of rational inner functions in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, thereby obtaining a version of the Fisher's theorem.</div></span></li><li><span>(4)</span><span><div>Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(5)</span><span><div>The Carathéodory approximation for operator-valued functions is also discussed.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110978"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function theory on quotient domains related to the polydisc\",\"authors\":\"Mainak Bhowmik , Poornendu Kumar\",\"doi\":\"10.1016/j.jfa.2025.110978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under certain polynomial maps <span><math><mi>θ</mi><mo>:</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. The main contributions of this paper are as follows:<ul><li><span>(1)</span><span><div>We show that the closed algebra generated by inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> forms a proper subalgebra of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>, the algebra of bounded holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(2)</span><span><div>The set of all rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is shown to be dense in the norm-unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.</div></span></li><li><span>(3)</span><span><div>As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are continuous in the closure of <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> by convex combinations of rational inner functions in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, thereby obtaining a version of the Fisher's theorem.</div></span></li><li><span>(4)</span><span><div>Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(5)</span><span><div>The Carathéodory approximation for operator-valued functions is also discussed.</div></span></li></ul></div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 110978\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001600\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Function theory on quotient domains related to the polydisc
Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, , arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image of under certain polynomial maps . The main contributions of this paper are as follows:
(1)
We show that the closed algebra generated by inner functions on forms a proper subalgebra of , the algebra of bounded holomorphic functions on .
(2)
The set of all rational inner functions on is shown to be dense in the norm-unit ball of with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.
(3)
As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on that are continuous in the closure of by convex combinations of rational inner functions in the -norm, thereby obtaining a version of the Fisher's theorem.
(4)
Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on .
(5)
The Carathéodory approximation for operator-valued functions is also discussed.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis