与多盘有关的商域的函数理论

IF 1.7 2区 数学 Q1 MATHEMATICS
Mainak Bhowmik , Poornendu Kumar
{"title":"与多盘有关的商域的函数理论","authors":"Mainak Bhowmik ,&nbsp;Poornendu Kumar","doi":"10.1016/j.jfa.2025.110978","DOIUrl":null,"url":null,"abstract":"<div><div>Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under certain polynomial maps <span><math><mi>θ</mi><mo>:</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. The main contributions of this paper are as follows:<ul><li><span>(1)</span><span><div>We show that the closed algebra generated by inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> forms a proper subalgebra of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>, the algebra of bounded holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(2)</span><span><div>The set of all rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is shown to be dense in the norm-unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.</div></span></li><li><span>(3)</span><span><div>As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are continuous in the closure of <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> by convex combinations of rational inner functions in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, thereby obtaining a version of the Fisher's theorem.</div></span></li><li><span>(4)</span><span><div>Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(5)</span><span><div>The Carathéodory approximation for operator-valued functions is also discussed.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110978"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function theory on quotient domains related to the polydisc\",\"authors\":\"Mainak Bhowmik ,&nbsp;Poornendu Kumar\",\"doi\":\"10.1016/j.jfa.2025.110978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under certain polynomial maps <span><math><mi>θ</mi><mo>:</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. The main contributions of this paper are as follows:<ul><li><span>(1)</span><span><div>We show that the closed algebra generated by inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> forms a proper subalgebra of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>, the algebra of bounded holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(2)</span><span><div>The set of all rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is shown to be dense in the norm-unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.</div></span></li><li><span>(3)</span><span><div>As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are continuous in the closure of <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> by convex combinations of rational inner functions in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, thereby obtaining a version of the Fisher's theorem.</div></span></li><li><span>(4)</span><span><div>Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on <span><math><mi>θ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></span></li><li><span>(5)</span><span><div>The Carathéodory approximation for operator-valued functions is also discussed.</div></span></li></ul></div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 110978\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001600\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

内函数是全纯函数理论的主干。本文研究了由有限伪反射群的群作用引起的开单位多盘Dd商域上的内函数。已知在某些多项式映射θ:Dd→θ(Dd)下,这些商域对Dd的适当像θ(Dd)是生物全纯的。本文的主要贡献如下:(1)证明了由θ(Dd)上的内函数生成的闭代数形成了H∞(θ(Dd))的固有子代数,即θ(Dd)上有界全纯函数的代数。(2)证明了θ(Dd)上的所有有理内函数的集合在H∞(θ(Dd))的范数单位球上相对于一致紧开拓扑是致密的,从而证明了carath odory逼近结果。利用l2范数上有理内函数的凸组合逼近θ(Dd)上在θ(Dd)闭包中连续的全纯函数,从而得到费雪定理的一个版本。(4)根据上述两个近似结果,建立有理内函数的结构是必要的。我们确定了θ(Dd)上的有理内函数的结构。(5)讨论了算子值函数的carathacimodory逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function theory on quotient domains related to the polydisc
Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, Dd, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image θ(Dd) of Dd under certain polynomial maps θ:Ddθ(Dd). The main contributions of this paper are as follows:
  • (1)
    We show that the closed algebra generated by inner functions on θ(Dd) forms a proper subalgebra of H(θ(Dd)), the algebra of bounded holomorphic functions on θ(Dd).
  • (2)
    The set of all rational inner functions on θ(Dd) is shown to be dense in the norm-unit ball of H(θ(Dd)) with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result.
  • (3)
    As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on θ(Dd) that are continuous in the closure of θ(Dd) by convex combinations of rational inner functions in the L2-norm, thereby obtaining a version of the Fisher's theorem.
  • (4)
    Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on θ(Dd).
  • (5)
    The Carathéodory approximation for operator-valued functions is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信