{"title":"非线性Klein-Gordon方程孤立波解的稳定性和不稳定性","authors":"Jing Li , Yue Liu , Yifei Wu , Haohao Zheng","doi":"10.1016/j.jfa.2025.110981","DOIUrl":null,"url":null,"abstract":"<div><div>The nonlinear Klein-Gordon (KG) equation,<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span></span></span> is shown in the present paper to possess the solitary-wave solutions in the form of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ω</mi><mi>t</mi></mrow></msup><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mi>t</mi><mo>)</mo></math></span> with the parameters <em>ω</em> and <span><math><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> satisfying <span><math><mo>|</mo><mi>ω</mi><mo>|</mo><mo><</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span> and <span><math><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo><</mo><mn>1</mn></math></span>. By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> such that these localized solitary waves, when considered as solutions of the initial-value problem for the nonlinear KG equation, is dynamically stable when <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>></mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> and is dynamically unstable when <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mn>0</mn><mo><</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>≤</mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> or <span><math><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>≤</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> (<span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> or <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) to small perturbations.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110981"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and instability of solitary-wave solutions for the nonlinear Klein-Gordon equation\",\"authors\":\"Jing Li , Yue Liu , Yifei Wu , Haohao Zheng\",\"doi\":\"10.1016/j.jfa.2025.110981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nonlinear Klein-Gordon (KG) equation,<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span></span></span> is shown in the present paper to possess the solitary-wave solutions in the form of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ω</mi><mi>t</mi></mrow></msup><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mi>t</mi><mo>)</mo></math></span> with the parameters <em>ω</em> and <span><math><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> satisfying <span><math><mo>|</mo><mi>ω</mi><mo>|</mo><mo><</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span> and <span><math><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo><</mo><mn>1</mn></math></span>. By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> such that these localized solitary waves, when considered as solutions of the initial-value problem for the nonlinear KG equation, is dynamically stable when <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>></mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> and is dynamically unstable when <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mn>0</mn><mo><</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>≤</mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> or <span><math><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>≤</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> (<span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> or <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) to small perturbations.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 110981\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001636\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001636","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability and instability of solitary-wave solutions for the nonlinear Klein-Gordon equation
The nonlinear Klein-Gordon (KG) equation, is shown in the present paper to possess the solitary-wave solutions in the form of with the parameters ω and satisfying and . By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency such that these localized solitary waves, when considered as solutions of the initial-value problem for the nonlinear KG equation, is dynamically stable when and is dynamically unstable when or ( or if ) to small perturbations.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis