{"title":"拉普拉斯上型的lp谱理论","authors":"Nelia Charalambous , Zhiqin Lu","doi":"10.1016/j.jfa.2025.110976","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we find sufficient conditions on an open Riemannian manifold so that a Weyl criterion holds for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-spectrum of the Laplacian on <em>k</em>-forms, and also prove the decomposition of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-spectrum depending on the order of the forms. We then show that the resolvent set of an operator such as the Laplacian on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> lies outside a parabola whenever the volume of the manifold has an exponential volume growth rate, removing the requirement on the manifold to be of bounded geometry. We conclude by providing a detailed description of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spectrum of the Laplacian on <em>k</em>-forms over hyperbolic space.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110976"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp-spectral theory for the Laplacian on forms\",\"authors\":\"Nelia Charalambous , Zhiqin Lu\",\"doi\":\"10.1016/j.jfa.2025.110976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we find sufficient conditions on an open Riemannian manifold so that a Weyl criterion holds for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-spectrum of the Laplacian on <em>k</em>-forms, and also prove the decomposition of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-spectrum depending on the order of the forms. We then show that the resolvent set of an operator such as the Laplacian on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> lies outside a parabola whenever the volume of the manifold has an exponential volume growth rate, removing the requirement on the manifold to be of bounded geometry. We conclude by providing a detailed description of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spectrum of the Laplacian on <em>k</em>-forms over hyperbolic space.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 110976\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001582\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001582","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article, we find sufficient conditions on an open Riemannian manifold so that a Weyl criterion holds for the -spectrum of the Laplacian on k-forms, and also prove the decomposition of the -spectrum depending on the order of the forms. We then show that the resolvent set of an operator such as the Laplacian on lies outside a parabola whenever the volume of the manifold has an exponential volume growth rate, removing the requirement on the manifold to be of bounded geometry. We conclude by providing a detailed description of the spectrum of the Laplacian on k-forms over hyperbolic space.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis