G. Ulus , EN Özbek , H. Yılmaz , E. Keselik , M. Sarıcaoğlu , S. Akyol Bahçeci , E. İşel , B. Debeleç Bütüner , G. Yetik Anacak , AT Koparal
{"title":"五水硼砂作为一种有前途的硼基血管生成抑制剂","authors":"G. Ulus , EN Özbek , H. Yılmaz , E. Keselik , M. Sarıcaoğlu , S. Akyol Bahçeci , E. İşel , B. Debeleç Bütüner , G. Yetik Anacak , AT Koparal","doi":"10.1016/j.jtemb.2025.127640","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Boron, a trace element, is involved in various physiological and metabolic processes, and recent studies suggest that boron compounds may have potential in cancer prevention and treatment. In this study, the antiangiogenic effects of a boron compound, borax pentahydrate (BPH), were investigated. Angiogenesis is a tightly regulated biological process responsible for the formation of new blood vessels from existing vasculatures. This process plays a critical role in cancer progression, making it an important target for cancer therapy. Pancreatic and kidney cancers are difficult to treat because they are aggressive and resistant to chemotherapy.</div></div><div><h3>Methods</h3><div>The antiproliferative activity was evaluated using the MTT assay, while antiangiogenic effects were tested through in vitro tube formation assays and in ovo chick chorioallantoic membrane (CAM) assay. The effect of BPH on VEGF levels was determined using Western blot analysis in HUVEC, ACHN, PANC-1 cells. The effect of BPH on tumor angiogenesis was investigated with an in vivo Ehrlich ascites carcinoma model (EAC).</div></div><div><h3>Results</h3><div>BPH exhibited potent antiproliferative and antiangiogenic activities, inhibiting the proliferation of ACHN, PANC-1, and HUVECs, disrupting endothelial tube formation, and inhibiting vascular formation on the CAM surface in a dose-dependent manner. VEGF levels were significantly decreased in ACHN, PANC-1 and HUVECs. There was also a decrease in VEGF and TGF-β1 levels in BPH-treated tumor groups. In addition, BPH caused a decrease in tumor size.</div></div><div><h3>Conclusion</h3><div>These findings suggest that BPH may be a new antiangiogenic and antitumoral agent. BPH may contribute to drug development studies targeting angiogenesis-related diseases as a promising new therapeutic agent.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"89 ","pages":"Article 127640"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borax pentahydrate as a promising boron-based angiogenesis inhibitor\",\"authors\":\"G. Ulus , EN Özbek , H. Yılmaz , E. Keselik , M. Sarıcaoğlu , S. Akyol Bahçeci , E. İşel , B. Debeleç Bütüner , G. Yetik Anacak , AT Koparal\",\"doi\":\"10.1016/j.jtemb.2025.127640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Boron, a trace element, is involved in various physiological and metabolic processes, and recent studies suggest that boron compounds may have potential in cancer prevention and treatment. In this study, the antiangiogenic effects of a boron compound, borax pentahydrate (BPH), were investigated. Angiogenesis is a tightly regulated biological process responsible for the formation of new blood vessels from existing vasculatures. This process plays a critical role in cancer progression, making it an important target for cancer therapy. Pancreatic and kidney cancers are difficult to treat because they are aggressive and resistant to chemotherapy.</div></div><div><h3>Methods</h3><div>The antiproliferative activity was evaluated using the MTT assay, while antiangiogenic effects were tested through in vitro tube formation assays and in ovo chick chorioallantoic membrane (CAM) assay. The effect of BPH on VEGF levels was determined using Western blot analysis in HUVEC, ACHN, PANC-1 cells. The effect of BPH on tumor angiogenesis was investigated with an in vivo Ehrlich ascites carcinoma model (EAC).</div></div><div><h3>Results</h3><div>BPH exhibited potent antiproliferative and antiangiogenic activities, inhibiting the proliferation of ACHN, PANC-1, and HUVECs, disrupting endothelial tube formation, and inhibiting vascular formation on the CAM surface in a dose-dependent manner. VEGF levels were significantly decreased in ACHN, PANC-1 and HUVECs. There was also a decrease in VEGF and TGF-β1 levels in BPH-treated tumor groups. In addition, BPH caused a decrease in tumor size.</div></div><div><h3>Conclusion</h3><div>These findings suggest that BPH may be a new antiangiogenic and antitumoral agent. BPH may contribute to drug development studies targeting angiogenesis-related diseases as a promising new therapeutic agent.</div></div>\",\"PeriodicalId\":49970,\"journal\":{\"name\":\"Journal of Trace Elements in Medicine and Biology\",\"volume\":\"89 \",\"pages\":\"Article 127640\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Trace Elements in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0946672X25000537\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X25000537","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Borax pentahydrate as a promising boron-based angiogenesis inhibitor
Background
Boron, a trace element, is involved in various physiological and metabolic processes, and recent studies suggest that boron compounds may have potential in cancer prevention and treatment. In this study, the antiangiogenic effects of a boron compound, borax pentahydrate (BPH), were investigated. Angiogenesis is a tightly regulated biological process responsible for the formation of new blood vessels from existing vasculatures. This process plays a critical role in cancer progression, making it an important target for cancer therapy. Pancreatic and kidney cancers are difficult to treat because they are aggressive and resistant to chemotherapy.
Methods
The antiproliferative activity was evaluated using the MTT assay, while antiangiogenic effects were tested through in vitro tube formation assays and in ovo chick chorioallantoic membrane (CAM) assay. The effect of BPH on VEGF levels was determined using Western blot analysis in HUVEC, ACHN, PANC-1 cells. The effect of BPH on tumor angiogenesis was investigated with an in vivo Ehrlich ascites carcinoma model (EAC).
Results
BPH exhibited potent antiproliferative and antiangiogenic activities, inhibiting the proliferation of ACHN, PANC-1, and HUVECs, disrupting endothelial tube formation, and inhibiting vascular formation on the CAM surface in a dose-dependent manner. VEGF levels were significantly decreased in ACHN, PANC-1 and HUVECs. There was also a decrease in VEGF and TGF-β1 levels in BPH-treated tumor groups. In addition, BPH caused a decrease in tumor size.
Conclusion
These findings suggest that BPH may be a new antiangiogenic and antitumoral agent. BPH may contribute to drug development studies targeting angiogenesis-related diseases as a promising new therapeutic agent.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.