{"title":"一类奇异灵敏度最小抛物-椭圆趋化系统全局有界准则的改进","authors":"Halil Ibrahim Kurt","doi":"10.1016/j.aml.2025.109570","DOIUrl":null,"url":null,"abstract":"<div><div>This article deals with the following singular parabolic–elliptic chemotaxis system <span><span><span>(0.1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, where parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mi>α</mi></mrow></math></span> and <span><math><mi>μ</mi></math></span> are positive constants. Fujie, Winkler, and Yokota Fujie(2015) in 2014 and Fujie and Senba Fujie(2016) in 2016 proved that system <span><span>(0.1)</span></span> has a unique globally bounded classical solution when <span><math><mrow><mi>α</mi><mo>=</mo><mi>μ</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><span><span>(0.2)</span><span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mspace></mspace><mspace></mspace><mtext>or</mtext><mspace></mspace><mspace></mspace><mi>χ</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span></span></span>which has remained a critical point for over a decade. However, this article presents a new perspective and shows that assumption <span><span>(0.2)</span></span> does not actually constitute a turning point for global classical solutions. Among others, we prove that for all suitable smooth initial data and all <span><math><mrow><mi>α</mi><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, the problem <span><math><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></math></span> possesses a global classical solution that is uniformly bounded if <span><span><span>(0.3)</span><span><math><mrow><mi>χ</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mi>⋅</mi><msqrt><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn><mo>.</mo></mrow></math></span></span></span>We remark that the current study has enhanced the result <span><span>(0.2)</span></span> found in Fujie(2015) and has developed a systematic technique to generate further improvements on the assumption <span><span>(0.3)</span></span>. Future advancements are intentionally left open for the reader’s consideration.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"167 ","pages":"Article 109570"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of criteria for global boundedness in a minimal parabolic–elliptic chemotaxis system with singular sensitivity\",\"authors\":\"Halil Ibrahim Kurt\",\"doi\":\"10.1016/j.aml.2025.109570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article deals with the following singular parabolic–elliptic chemotaxis system <span><span><span>(0.1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mi>v</mi></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, where parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mi>α</mi></mrow></math></span> and <span><math><mi>μ</mi></math></span> are positive constants. Fujie, Winkler, and Yokota Fujie(2015) in 2014 and Fujie and Senba Fujie(2016) in 2016 proved that system <span><span>(0.1)</span></span> has a unique globally bounded classical solution when <span><math><mrow><mi>α</mi><mo>=</mo><mi>μ</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><span><span>(0.2)</span><span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mspace></mspace><mspace></mspace><mtext>or</mtext><mspace></mspace><mspace></mspace><mi>χ</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span></span></span>which has remained a critical point for over a decade. However, this article presents a new perspective and shows that assumption <span><span>(0.2)</span></span> does not actually constitute a turning point for global classical solutions. Among others, we prove that for all suitable smooth initial data and all <span><math><mrow><mi>α</mi><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, the problem <span><math><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></math></span> possesses a global classical solution that is uniformly bounded if <span><span><span>(0.3)</span><span><math><mrow><mi>χ</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mi>⋅</mi><msqrt><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn><mo>.</mo></mrow></math></span></span></span>We remark that the current study has enhanced the result <span><span>(0.2)</span></span> found in Fujie(2015) and has developed a systematic technique to generate further improvements on the assumption <span><span>(0.3)</span></span>. Future advancements are intentionally left open for the reader’s consideration.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"167 \",\"pages\":\"Article 109570\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089396592500120X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500120X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论光滑有界域Ω∧RN中N≥3的齐次诺伊曼边界条件下奇异抛物-椭圆趋化系统(0.1)ut=Δu−χ∇⋅(uv∇v),x∈Ω,0=Δv−αv+μu,x∈Ω,其中参数χ、α、μ为正常数。Fujie, Winkler, and Yokota Fujie(2015)(2014)和Fujie and Senba Fujie(2016)(2016)分别证明了当α=μ=1和(0.2)N=2orχ<;2NwithN≥3时,系统(0.1)具有唯一的全局有界经典解,该解保持了十多年的临界点。然而,本文提出了一个新的观点,并表明假设(0.2)实际上并不构成全球经典解的转折点。其中,我们证明了对于所有合适的光滑初始数据和所有α,μ>0,当(0.3)χ<;2N+2N−12N3·N2N+2withN≥3时,问题(0.1)具有一致有界的全局经典解。我们注意到,目前的研究增强了Fujie(2015)的结果(0.2),并开发了一种系统的技术来进一步改进假设(0.3)。未来的发展是有意留给读者考虑的。
Improvement of criteria for global boundedness in a minimal parabolic–elliptic chemotaxis system with singular sensitivity
This article deals with the following singular parabolic–elliptic chemotaxis system (0.1)under homogeneous Neumann boundary conditions in a smooth bounded domain with , where parameters and are positive constants. Fujie, Winkler, and Yokota Fujie(2015) in 2014 and Fujie and Senba Fujie(2016) in 2016 proved that system (0.1) has a unique globally bounded classical solution when and (0.2)which has remained a critical point for over a decade. However, this article presents a new perspective and shows that assumption (0.2) does not actually constitute a turning point for global classical solutions. Among others, we prove that for all suitable smooth initial data and all , the problem possesses a global classical solution that is uniformly bounded if (0.3)We remark that the current study has enhanced the result (0.2) found in Fujie(2015) and has developed a systematic technique to generate further improvements on the assumption (0.3). Future advancements are intentionally left open for the reader’s consideration.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.