变构核酶驱动的crRNA开关,用于无扩增检测生物分子

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Mei Su , Hong-Shuai Zhang , Hao Liu , Kai Yang , Zhan-Ming Ying
{"title":"变构核酶驱动的crRNA开关,用于无扩增检测生物分子","authors":"Mei Su ,&nbsp;Hong-Shuai Zhang ,&nbsp;Hao Liu ,&nbsp;Kai Yang ,&nbsp;Zhan-Ming Ying","doi":"10.1016/j.bios.2025.117450","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, CRISPR-mediated biosensors are concentrating on the design of the crRNA or the activator strand to regulate the trans-cleavage activity of Cas12a. Herein, we report an allosteric ribozyme-driven crRNA switch-regulated CRISPR/Cas12a sensor for amplification-free detection of biomolecules. An allosteric ribozyme is meticulously engineered to connect the target recognition sequence with the 5′ binding arm of the hammerhead ribozyme, resulting in the formation of a hairpin structure through complementary hybridization. The presence of target induces the conformational change in the allosteric module and disrupts the hairpin structure, restoring multiple-turnover cleavage RNA activity of ribozyme. Then, the activated ribozyme specifically cuts the cleavage site of the substrate-locked crRNA and releases the native crRNA to initiate CRISPR/Cas12a functions for signal reporting. The reported biosensor exhibited high sensitivity and excellent specificity for miR-155 and adenosine triphosphate (ATP) detection, giving the detection limits of 256 fM and 160 nM, respectively. For clinical validation, our proposed strategy can quantify miR-155 expression levels in cells and serum of cancer patients. Furthermore, we also demonstrate that the allosteric ribozyme-driven crRNA switch can be easily compatible with lateral flow assays, realizing visualization and the portable monitoring of target. Hence, the biosensor not only has outstanding potential in point-of-care testing, but also enables the detection of various biomolecules by flexibly substituting target recognition sequences for molecular diagnosis in the clinic.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"280 ","pages":"Article 117450"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allosteric ribozyme-driven crRNA switch for the amplification-free detection of biomolecules\",\"authors\":\"Mei Su ,&nbsp;Hong-Shuai Zhang ,&nbsp;Hao Liu ,&nbsp;Kai Yang ,&nbsp;Zhan-Ming Ying\",\"doi\":\"10.1016/j.bios.2025.117450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Currently, CRISPR-mediated biosensors are concentrating on the design of the crRNA or the activator strand to regulate the trans-cleavage activity of Cas12a. Herein, we report an allosteric ribozyme-driven crRNA switch-regulated CRISPR/Cas12a sensor for amplification-free detection of biomolecules. An allosteric ribozyme is meticulously engineered to connect the target recognition sequence with the 5′ binding arm of the hammerhead ribozyme, resulting in the formation of a hairpin structure through complementary hybridization. The presence of target induces the conformational change in the allosteric module and disrupts the hairpin structure, restoring multiple-turnover cleavage RNA activity of ribozyme. Then, the activated ribozyme specifically cuts the cleavage site of the substrate-locked crRNA and releases the native crRNA to initiate CRISPR/Cas12a functions for signal reporting. The reported biosensor exhibited high sensitivity and excellent specificity for miR-155 and adenosine triphosphate (ATP) detection, giving the detection limits of 256 fM and 160 nM, respectively. For clinical validation, our proposed strategy can quantify miR-155 expression levels in cells and serum of cancer patients. Furthermore, we also demonstrate that the allosteric ribozyme-driven crRNA switch can be easily compatible with lateral flow assays, realizing visualization and the portable monitoring of target. Hence, the biosensor not only has outstanding potential in point-of-care testing, but also enables the detection of various biomolecules by flexibly substituting target recognition sequences for molecular diagnosis in the clinic.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"280 \",\"pages\":\"Article 117450\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325003240\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325003240","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目前,crispr介导的生物传感器主要集中在设计crRNA或激活子链来调节Cas12a的反式切割活性。在此,我们报道了一种可变核酶驱动的crRNA开关调节CRISPR/Cas12a传感器,用于无扩增检测生物分子。我们精心设计了一种变构核酶,将目标识别序列与锤头核酶的5 '结合臂连接起来,通过互补杂交形成发夹结构。靶标的存在诱导变构模的构象改变,破坏发夹结构,恢复核酶的多翻裂解RNA活性。然后,激活的核酶特异性切割被底物锁定的crRNA的切割位点,释放天然crRNA,启动CRISPR/Cas12a功能进行信号报告。所报道的生物传感器对miR-155和三磷酸腺苷(ATP)的检测具有高灵敏度和极好的特异性,检测限分别为256 fM和160 nM。为了临床验证,我们提出的策略可以量化肿瘤患者细胞和血清中miR-155的表达水平。此外,我们还证明了变弹性核酶驱动的crRNA开关可以很容易地与侧流分析兼容,实现了目标的可视化和便携式监测。因此,该生物传感器不仅在即时检测方面具有突出的潜力,而且在临床中可以灵活地替代靶标识别序列进行分子诊断,从而实现对各种生物分子的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Allosteric ribozyme-driven crRNA switch for the amplification-free detection of biomolecules
Currently, CRISPR-mediated biosensors are concentrating on the design of the crRNA or the activator strand to regulate the trans-cleavage activity of Cas12a. Herein, we report an allosteric ribozyme-driven crRNA switch-regulated CRISPR/Cas12a sensor for amplification-free detection of biomolecules. An allosteric ribozyme is meticulously engineered to connect the target recognition sequence with the 5′ binding arm of the hammerhead ribozyme, resulting in the formation of a hairpin structure through complementary hybridization. The presence of target induces the conformational change in the allosteric module and disrupts the hairpin structure, restoring multiple-turnover cleavage RNA activity of ribozyme. Then, the activated ribozyme specifically cuts the cleavage site of the substrate-locked crRNA and releases the native crRNA to initiate CRISPR/Cas12a functions for signal reporting. The reported biosensor exhibited high sensitivity and excellent specificity for miR-155 and adenosine triphosphate (ATP) detection, giving the detection limits of 256 fM and 160 nM, respectively. For clinical validation, our proposed strategy can quantify miR-155 expression levels in cells and serum of cancer patients. Furthermore, we also demonstrate that the allosteric ribozyme-driven crRNA switch can be easily compatible with lateral flow assays, realizing visualization and the portable monitoring of target. Hence, the biosensor not only has outstanding potential in point-of-care testing, but also enables the detection of various biomolecules by flexibly substituting target recognition sequences for molecular diagnosis in the clinic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信