Lipschitz区域上部分切迹的弱等于强L2正则性

IF 1.2 3区 数学 Q1 MATHEMATICS
Nathanael Skrepek , Dirk Pauly
{"title":"Lipschitz区域上部分切迹的弱等于强L2正则性","authors":"Nathanael Skrepek ,&nbsp;Dirk Pauly","doi":"10.1016/j.jmaa.2025.129548","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the boundary trace operators that naturally correspond to <span><math><mi>H</mi><mo>(</mo><mi>curl</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span>, namely the tangential and twisted tangential trace, where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. In particular we regard partial tangential traces, i.e., we look only on a subset Γ of the boundary ∂Ω. We assume both Ω and Γ to be strongly Lipschitz (possibly unbounded). We define the space of all <span><math><mi>H</mi><mo>(</mo><mi>curl</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> fields that possess a <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> tangential trace in a weak sense and show that the set of all smooth fields is dense in that space, which is a generalization of <span><span>[1]</span></span>. This is especially important for Maxwell's equation with mixed boundary condition as we answer the open problem by Weiss and Staffans in <span><span>[10, Sec. 5]</span></span> for strongly Lipschitz pairs.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129548"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak equals strong L2 regularity for partial tangential traces on Lipschitz domains\",\"authors\":\"Nathanael Skrepek ,&nbsp;Dirk Pauly\",\"doi\":\"10.1016/j.jmaa.2025.129548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the boundary trace operators that naturally correspond to <span><math><mi>H</mi><mo>(</mo><mi>curl</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span>, namely the tangential and twisted tangential trace, where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. In particular we regard partial tangential traces, i.e., we look only on a subset Γ of the boundary ∂Ω. We assume both Ω and Γ to be strongly Lipschitz (possibly unbounded). We define the space of all <span><math><mi>H</mi><mo>(</mo><mi>curl</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> fields that possess a <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> tangential trace in a weak sense and show that the set of all smooth fields is dense in that space, which is a generalization of <span><span>[1]</span></span>. This is especially important for Maxwell's equation with mixed boundary condition as we answer the open problem by Weiss and Staffans in <span><span>[10, Sec. 5]</span></span> for strongly Lipschitz pairs.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129548\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003294\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了自然对应于H(旋度,Ω)的边界轨迹算子,即切向和扭转切向轨迹,其中Ω特别地,我们考虑部分切向轨迹,即,我们只看边界∂Ω的子集Γ。我们假设Ω和Γ都是强Lipschitz(可能无界)。我们在弱意义上定义了所有具有L2切迹的H(旋度,Ω)场的空间,并证明了所有光滑场的集合在该空间中是稠密的,这是[1]的推广。当我们回答Weiss和Staffans在[10,第5节]中关于强Lipschitz对的开放问题时,这对于具有混合边界条件的Maxwell方程尤其重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak equals strong L2 regularity for partial tangential traces on Lipschitz domains
We investigate the boundary trace operators that naturally correspond to H(curl,Ω), namely the tangential and twisted tangential trace, where ΩR3. In particular we regard partial tangential traces, i.e., we look only on a subset Γ of the boundary ∂Ω. We assume both Ω and Γ to be strongly Lipschitz (possibly unbounded). We define the space of all H(curl,Ω) fields that possess a L2 tangential trace in a weak sense and show that the set of all smooth fields is dense in that space, which is a generalization of [1]. This is especially important for Maxwell's equation with mixed boundary condition as we answer the open problem by Weiss and Staffans in [10, Sec. 5] for strongly Lipschitz pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信