有限阶元不可约表示的性质——一个渐近公式

IF 0.8 2区 数学 Q2 MATHEMATICS
Shrawan Kumar , Dipendra Prasad
{"title":"有限阶元不可约表示的性质——一个渐近公式","authors":"Shrawan Kumar ,&nbsp;Dipendra Prasad","doi":"10.1016/j.jalgebra.2025.03.030","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected reductive group over the complex numbers and let <span><math><mi>T</mi><mo>⊂</mo><mi>G</mi></math></span> be a maximal torus. For any <span><math><mi>t</mi><mo>∈</mo><mi>T</mi></math></span> of finite order and any irreducible representation <span><math><mi>V</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> of <em>G</em> of highest weight <em>λ</em>, we determine the character <span><math><mi>ch</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>V</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>)</mo></math></span> by using the Lefschetz Trace Formula due to Atiyah-Singer and explicitly determining the connected components and their normal bundles of the fixed point subvariety <span><math><msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><mo>⊂</mo><mi>G</mi><mo>/</mo><mi>P</mi></math></span> (for any parabolic subgroup <em>P</em>). This together with Wirtinger's theorem gives an asymptotic formula for <span><math><mi>ch</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>V</mi><mo>(</mo><mi>n</mi><mi>λ</mi><mo>)</mo><mo>)</mo></math></span> when <em>n</em> goes to infinity.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"676 ","pages":"Pages 69-81"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character of irreducible representations restricted to finite order elements - an asymptotic formula\",\"authors\":\"Shrawan Kumar ,&nbsp;Dipendra Prasad\",\"doi\":\"10.1016/j.jalgebra.2025.03.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a connected reductive group over the complex numbers and let <span><math><mi>T</mi><mo>⊂</mo><mi>G</mi></math></span> be a maximal torus. For any <span><math><mi>t</mi><mo>∈</mo><mi>T</mi></math></span> of finite order and any irreducible representation <span><math><mi>V</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> of <em>G</em> of highest weight <em>λ</em>, we determine the character <span><math><mi>ch</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>V</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>)</mo></math></span> by using the Lefschetz Trace Formula due to Atiyah-Singer and explicitly determining the connected components and their normal bundles of the fixed point subvariety <span><math><msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><mo>⊂</mo><mi>G</mi><mo>/</mo><mi>P</mi></math></span> (for any parabolic subgroup <em>P</em>). This together with Wirtinger's theorem gives an asymptotic formula for <span><math><mi>ch</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>V</mi><mo>(</mo><mi>n</mi><mi>λ</mi><mo>)</mo><mo>)</mo></math></span> when <em>n</em> goes to infinity.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"676 \",\"pages\":\"Pages 69-81\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325001711\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001711","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是复数上的连通约化群,设T∧G是一个极大环面。对于任意有限阶的t∈t和最高权值为λ的G的任意不可约表示V(λ),我们利用Atiyah-Singer的Lefschetz迹公式确定了特征ch(t,V(λ)),并显式确定了不动点子变量(G/P)t∧G/P(对于任意抛物子群P)的连通分量及其法线束。这与Wirtinger定理一起给出了当n趋于无穷时ch(t,V(nλ))的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Character of irreducible representations restricted to finite order elements - an asymptotic formula
Let G be a connected reductive group over the complex numbers and let TG be a maximal torus. For any tT of finite order and any irreducible representation V(λ) of G of highest weight λ, we determine the character ch(t,V(λ)) by using the Lefschetz Trace Formula due to Atiyah-Singer and explicitly determining the connected components and their normal bundles of the fixed point subvariety (G/P)tG/P (for any parabolic subgroup P). This together with Wirtinger's theorem gives an asymptotic formula for ch(t,V(nλ)) when n goes to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信