Se-Dong Jang, Jae-Hwan Yoo, Yeon-Su Lee, Byunghyun Kim
{"title":"考虑降雨统计特征的基于机器学习的城市洪水预测","authors":"Se-Dong Jang, Jae-Hwan Yoo, Yeon-Su Lee, Byunghyun Kim","doi":"10.1016/j.pdisas.2025.100415","DOIUrl":null,"url":null,"abstract":"<div><div>Urbanization has increased impervious surfaces, while climate change has intensified rainfall, leading to more frequent urban flooding. Traditional numerical models for flood prediction are accurate but time-consuming due to extensive parameter calibration and data processing. This study addresses these limitations by proposing a machine learning-based flood prediction method using a Random Forest model. By utilizing past rainfall data, 1D drainage system simulations, and 2D flood analyses, we trained the model to predict flood patterns for various rainfall events. To enhance prediction accuracy, statistical characteristics of rainfall, such as temporal distribution, were incorporated into the model. Performance metrics (RMSE, R<sup>2</sup>, MAE) for the test dataset showed values of 3.1573, 0.9682, and 0.9484 for the total rainfall model, and 2.7354, 0.9761, and 0.8942 for the model with statistical characteristics. Both models displayed high predictive accuracy relative to the numerical model, with the Random Forest model using statistical characteristics showing slightly improved performance. This method provides faster, reliable flood predictions, offering a valuable tool for real-time urban flood management and decision-making during emergency situations.</div></div>","PeriodicalId":52341,"journal":{"name":"Progress in Disaster Science","volume":"26 ","pages":"Article 100415"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood prediction in urban areas based on machine learning considering the statistical characteristics of rainfall\",\"authors\":\"Se-Dong Jang, Jae-Hwan Yoo, Yeon-Su Lee, Byunghyun Kim\",\"doi\":\"10.1016/j.pdisas.2025.100415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urbanization has increased impervious surfaces, while climate change has intensified rainfall, leading to more frequent urban flooding. Traditional numerical models for flood prediction are accurate but time-consuming due to extensive parameter calibration and data processing. This study addresses these limitations by proposing a machine learning-based flood prediction method using a Random Forest model. By utilizing past rainfall data, 1D drainage system simulations, and 2D flood analyses, we trained the model to predict flood patterns for various rainfall events. To enhance prediction accuracy, statistical characteristics of rainfall, such as temporal distribution, were incorporated into the model. Performance metrics (RMSE, R<sup>2</sup>, MAE) for the test dataset showed values of 3.1573, 0.9682, and 0.9484 for the total rainfall model, and 2.7354, 0.9761, and 0.8942 for the model with statistical characteristics. Both models displayed high predictive accuracy relative to the numerical model, with the Random Forest model using statistical characteristics showing slightly improved performance. This method provides faster, reliable flood predictions, offering a valuable tool for real-time urban flood management and decision-making during emergency situations.</div></div>\",\"PeriodicalId\":52341,\"journal\":{\"name\":\"Progress in Disaster Science\",\"volume\":\"26 \",\"pages\":\"Article 100415\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Disaster Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590061725000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Disaster Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590061725000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Flood prediction in urban areas based on machine learning considering the statistical characteristics of rainfall
Urbanization has increased impervious surfaces, while climate change has intensified rainfall, leading to more frequent urban flooding. Traditional numerical models for flood prediction are accurate but time-consuming due to extensive parameter calibration and data processing. This study addresses these limitations by proposing a machine learning-based flood prediction method using a Random Forest model. By utilizing past rainfall data, 1D drainage system simulations, and 2D flood analyses, we trained the model to predict flood patterns for various rainfall events. To enhance prediction accuracy, statistical characteristics of rainfall, such as temporal distribution, were incorporated into the model. Performance metrics (RMSE, R2, MAE) for the test dataset showed values of 3.1573, 0.9682, and 0.9484 for the total rainfall model, and 2.7354, 0.9761, and 0.8942 for the model with statistical characteristics. Both models displayed high predictive accuracy relative to the numerical model, with the Random Forest model using statistical characteristics showing slightly improved performance. This method provides faster, reliable flood predictions, offering a valuable tool for real-time urban flood management and decision-making during emergency situations.
期刊介绍:
Progress in Disaster Science is a Gold Open Access journal focusing on integrating research and policy in disaster research, and publishes original research papers and invited viewpoint articles on disaster risk reduction; response; emergency management and recovery.
A key part of the Journal's Publication output will see key experts invited to assess and comment on the current trends in disaster research, as well as highlight key papers.