基于多目标优化的三种Kenics静态混合器强化传热研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yanfang Yu , Wenlong Qiao , Huibo Meng , Haijun Wan , Wen Sun , Puyu Zhang , Jingyu Guo , Feng Wang
{"title":"基于多目标优化的三种Kenics静态混合器强化传热研究","authors":"Yanfang Yu ,&nbsp;Wenlong Qiao ,&nbsp;Huibo Meng ,&nbsp;Haijun Wan ,&nbsp;Wen Sun ,&nbsp;Puyu Zhang ,&nbsp;Jingyu Guo ,&nbsp;Feng Wang","doi":"10.1016/j.ijthermalsci.2025.109911","DOIUrl":null,"url":null,"abstract":"<div><div>The enhancement of heat transfer efficiency in industrial processes remains a critical technological challenge for achieving optimal energy utilization and minimizing environmental impacts. In light of static mixers efficient heat transfer, this study employs experimental and numerical simulations at <em>Re</em> = 2600 ‒ 17,700 to investigate the influence of various geometric parameters in three Kenics static mixer (TKSM), including elevation angles (<em>α</em> = 0°, 3°, 5°, 7°), deflection angles (<em>θ</em> = 0°, 30°, 60°), and aspect ratios (<em>A</em><sub>r</sub> = 1, 1.25, 1.5). Artificial neural networks and multi-objective genetic algorithms are implemented to predict the geometric structure. Results indicate that the optimal heat transfer performance of TKSM occurs at <em>α</em> = 5° and <em>θ</em> = 60°, demonstrating an improvement of 1.69 %–3.7 % compared to <em>α</em> = 0°; when <em>θ</em> = 0° and <em>α</em> = 7°, the overall heat transfer performance of the <em>α</em> = 7° structure is improved by 6.9 %–11.7 % compared to the unmodified TKSM. Through ANNs modeling, correlations were established between structural parameters, heat transfer performance and fluid resistance, achieving prediction accuracies of 93.84 % and 89.6 % for Nusselt number (<em>Nu</em>) and pressure drop(Δ<em>p</em>), respectively. In the <em>Re</em> range of 2600–8800, the optimal structures are: <em>α</em> = 9°–9.6°, <em>θ</em> = 0.2°–0.5°, and <em>A</em><sub>r</sub> range from 1.39 to 1.46. Compared with the initial structure under the same operating conditions, the comprehensive heat transfer performance is improved by 7.69 %–11.58 %. In the <em>Re</em> range of 8800–17700, the optimal structures are: <em>α</em> = 2.2°–7.4°, <em>θ</em> = 18.9°–60° and <em>A</em><sub>r</sub> range from 1.46 to 1.5, the comprehensive heat transfer performance is improved by 7.85 %–9.84 %.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of enhancing heat transfer in three Kenics static mixer utilizing muti-objective optimization\",\"authors\":\"Yanfang Yu ,&nbsp;Wenlong Qiao ,&nbsp;Huibo Meng ,&nbsp;Haijun Wan ,&nbsp;Wen Sun ,&nbsp;Puyu Zhang ,&nbsp;Jingyu Guo ,&nbsp;Feng Wang\",\"doi\":\"10.1016/j.ijthermalsci.2025.109911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The enhancement of heat transfer efficiency in industrial processes remains a critical technological challenge for achieving optimal energy utilization and minimizing environmental impacts. In light of static mixers efficient heat transfer, this study employs experimental and numerical simulations at <em>Re</em> = 2600 ‒ 17,700 to investigate the influence of various geometric parameters in three Kenics static mixer (TKSM), including elevation angles (<em>α</em> = 0°, 3°, 5°, 7°), deflection angles (<em>θ</em> = 0°, 30°, 60°), and aspect ratios (<em>A</em><sub>r</sub> = 1, 1.25, 1.5). Artificial neural networks and multi-objective genetic algorithms are implemented to predict the geometric structure. Results indicate that the optimal heat transfer performance of TKSM occurs at <em>α</em> = 5° and <em>θ</em> = 60°, demonstrating an improvement of 1.69 %–3.7 % compared to <em>α</em> = 0°; when <em>θ</em> = 0° and <em>α</em> = 7°, the overall heat transfer performance of the <em>α</em> = 7° structure is improved by 6.9 %–11.7 % compared to the unmodified TKSM. Through ANNs modeling, correlations were established between structural parameters, heat transfer performance and fluid resistance, achieving prediction accuracies of 93.84 % and 89.6 % for Nusselt number (<em>Nu</em>) and pressure drop(Δ<em>p</em>), respectively. In the <em>Re</em> range of 2600–8800, the optimal structures are: <em>α</em> = 9°–9.6°, <em>θ</em> = 0.2°–0.5°, and <em>A</em><sub>r</sub> range from 1.39 to 1.46. Compared with the initial structure under the same operating conditions, the comprehensive heat transfer performance is improved by 7.69 %–11.58 %. In the <em>Re</em> range of 8800–17700, the optimal structures are: <em>α</em> = 2.2°–7.4°, <em>θ</em> = 18.9°–60° and <em>A</em><sub>r</sub> range from 1.46 to 1.5, the comprehensive heat transfer performance is improved by 7.85 %–9.84 %.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"214 \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925002340\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002340","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高工业过程中的传热效率仍然是实现最佳能源利用和减少环境影响的关键技术挑战。针对静态混合器的高效换热问题,本文采用Re = 2600 ~ 17700的实验和数值模拟方法,研究了三种Kenics静态混合器(TKSM)中仰角(α = 0°、3°、5°、7°)、偏转角(θ = 0°、30°、60°)和展弦比(Ar = 1,1.25、1.5)等几何参数对其传热的影响。采用人工神经网络和多目标遗传算法对几何结构进行预测。结果表明:TKSM在α = 5°和θ = 60°时换热性能最佳,比α = 0°时提高1.69% ~ 3.7%;当θ = 0°和α = 7°时,α = 7°结构的整体传热性能比未改性的TKSM提高了6.9% ~ 11.7%。通过人工神经网络建模,建立了结构参数、传热性能和流体阻力之间的相关性,对努塞尔数(Nu)和压降(Δp)的预测精度分别为93.84%和89.6%。在Re为2600 ~ 8800范围内,最优结构为α = 9°~ 9.6°,θ = 0.2°~ 0.5°,Ar为1.39 ~ 1.46。在相同工况下,与初始结构相比,综合换热性能提高了7.69% ~ 11.58%。在Re = 8800 ~ 17700范围内,优化结构为α = 2.2°~ 7.4°,θ = 18.9°~ 60°,Ar = 1.46 ~ 1.5,综合换热性能提高7.85% ~ 9.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of enhancing heat transfer in three Kenics static mixer utilizing muti-objective optimization
The enhancement of heat transfer efficiency in industrial processes remains a critical technological challenge for achieving optimal energy utilization and minimizing environmental impacts. In light of static mixers efficient heat transfer, this study employs experimental and numerical simulations at Re = 2600 ‒ 17,700 to investigate the influence of various geometric parameters in three Kenics static mixer (TKSM), including elevation angles (α = 0°, 3°, 5°, 7°), deflection angles (θ = 0°, 30°, 60°), and aspect ratios (Ar = 1, 1.25, 1.5). Artificial neural networks and multi-objective genetic algorithms are implemented to predict the geometric structure. Results indicate that the optimal heat transfer performance of TKSM occurs at α = 5° and θ = 60°, demonstrating an improvement of 1.69 %–3.7 % compared to α = 0°; when θ = 0° and α = 7°, the overall heat transfer performance of the α = 7° structure is improved by 6.9 %–11.7 % compared to the unmodified TKSM. Through ANNs modeling, correlations were established between structural parameters, heat transfer performance and fluid resistance, achieving prediction accuracies of 93.84 % and 89.6 % for Nusselt number (Nu) and pressure drop(Δp), respectively. In the Re range of 2600–8800, the optimal structures are: α = 9°–9.6°, θ = 0.2°–0.5°, and Ar range from 1.39 to 1.46. Compared with the initial structure under the same operating conditions, the comprehensive heat transfer performance is improved by 7.69 %–11.58 %. In the Re range of 8800–17700, the optimal structures are: α = 2.2°–7.4°, θ = 18.9°–60° and Ar range from 1.46 to 1.5, the comprehensive heat transfer performance is improved by 7.85 %–9.84 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信