纳米结构与钇在Y-BiVO4纳米棒的结构转化控制和电化学性能增强中的作用

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Khudija Munir , Ghulam Nabi
{"title":"纳米结构与钇在Y-BiVO4纳米棒的结构转化控制和电化学性能增强中的作用","authors":"Khudija Munir ,&nbsp;Ghulam Nabi","doi":"10.1016/j.electacta.2025.146135","DOIUrl":null,"url":null,"abstract":"<div><div>Structural transformations at the nanoscale, along with crystal imperfections introduced by ion doping, plays a critical role in improving electrochemical performance. In this study, a series of Y-doped BiVO<sub>4</sub> samples, with compositions Y<sub>x</sub>Bi<sub>1-x</sub>VO<sub>4</sub> (<em>x</em> = 0, 0.01, 0.03, 0.05), were synthesized and studied for supercapacitor applications. The structural and morphological investigations verified that Y-ion incorporation significantly influences the transition, transforming spherical nanoparticles into rod-like nanostructure. This increases the electrochemical active surface area for higher redox activity. The electrochemical examinations confirmed notable improvements in specific capacitance, with the electrode containing 3 % Y doping achieving a maximum capacitance of 2127 F/g at a scan rate of 5 mV/s, along with excellent retention of 90.9 % after 6000 charge-discharge cycles. This remarkable performance is attributed to the enhanced charge transport and conductivity due to rod-like nanostructure. Power-law analysis (<em>b</em> = 0.68) and Dunn's method (54.93 % capacitive contribution at 100 mV/s scan rate) further substantiate the pseudocapacitive behavior of the material. The low R<sub>s</sub> values from EIS and high specific capacitance of 3 % Y-BiVO<sub>4</sub> nanorods as promising candidates for high-performance supercapacitor applications, underscoring its potential to advance energy storage technology.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"526 ","pages":"Article 146135"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoarchitectonics with yttrium role in controlled structural transformations and enhanced electrochemical performance of Y-BiVO4 nanorods for supercapacitor electrode applications\",\"authors\":\"Khudija Munir ,&nbsp;Ghulam Nabi\",\"doi\":\"10.1016/j.electacta.2025.146135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural transformations at the nanoscale, along with crystal imperfections introduced by ion doping, plays a critical role in improving electrochemical performance. In this study, a series of Y-doped BiVO<sub>4</sub> samples, with compositions Y<sub>x</sub>Bi<sub>1-x</sub>VO<sub>4</sub> (<em>x</em> = 0, 0.01, 0.03, 0.05), were synthesized and studied for supercapacitor applications. The structural and morphological investigations verified that Y-ion incorporation significantly influences the transition, transforming spherical nanoparticles into rod-like nanostructure. This increases the electrochemical active surface area for higher redox activity. The electrochemical examinations confirmed notable improvements in specific capacitance, with the electrode containing 3 % Y doping achieving a maximum capacitance of 2127 F/g at a scan rate of 5 mV/s, along with excellent retention of 90.9 % after 6000 charge-discharge cycles. This remarkable performance is attributed to the enhanced charge transport and conductivity due to rod-like nanostructure. Power-law analysis (<em>b</em> = 0.68) and Dunn's method (54.93 % capacitive contribution at 100 mV/s scan rate) further substantiate the pseudocapacitive behavior of the material. The low R<sub>s</sub> values from EIS and high specific capacitance of 3 % Y-BiVO<sub>4</sub> nanorods as promising candidates for high-performance supercapacitor applications, underscoring its potential to advance energy storage technology.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"526 \",\"pages\":\"Article 146135\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625004979\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004979","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

纳米尺度的结构转变,以及离子掺杂引入的晶体缺陷,对提高电化学性能起着至关重要的作用。在本研究中,合成了一系列y掺杂BiVO4样品,其组成为YxBi1-xVO4 (x = 0,0.01, 0.03, 0.05),并研究了其在超级电容器中的应用。结构和形态研究证实,y离子掺入显著影响转变,使球形纳米颗粒转变为棒状纳米结构。这增加了电化学活性表面积以获得更高的氧化还原活性。电化学测试证实了比电容的显著改善,含有3% Y掺杂的电极在扫描速率为5 mV/s时实现了2127 F/g的最大电容,并且在6000次充放电循环后保持了90.9%的优异保留率。这种卓越的性能归功于棒状纳米结构增强的电荷传输和电导率。幂律分析(b = 0.68)和Dunn方法(在100 mV/s扫描速率下电容贡献为54.93%)进一步证实了材料的赝电容行为。3% Y-BiVO4纳米棒的EIS低Rs值和高比电容是高性能超级电容器应用的有希望的候选者,强调了其推进储能技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoarchitectonics with yttrium role in controlled structural transformations and enhanced electrochemical performance of Y-BiVO4 nanorods for supercapacitor electrode applications
Structural transformations at the nanoscale, along with crystal imperfections introduced by ion doping, plays a critical role in improving electrochemical performance. In this study, a series of Y-doped BiVO4 samples, with compositions YxBi1-xVO4 (x = 0, 0.01, 0.03, 0.05), were synthesized and studied for supercapacitor applications. The structural and morphological investigations verified that Y-ion incorporation significantly influences the transition, transforming spherical nanoparticles into rod-like nanostructure. This increases the electrochemical active surface area for higher redox activity. The electrochemical examinations confirmed notable improvements in specific capacitance, with the electrode containing 3 % Y doping achieving a maximum capacitance of 2127 F/g at a scan rate of 5 mV/s, along with excellent retention of 90.9 % after 6000 charge-discharge cycles. This remarkable performance is attributed to the enhanced charge transport and conductivity due to rod-like nanostructure. Power-law analysis (b = 0.68) and Dunn's method (54.93 % capacitive contribution at 100 mV/s scan rate) further substantiate the pseudocapacitive behavior of the material. The low Rs values from EIS and high specific capacitance of 3 % Y-BiVO4 nanorods as promising candidates for high-performance supercapacitor applications, underscoring its potential to advance energy storage technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信