一种基于支链杂交反应信号放大的比色电化学双峰赭曲霉毒素配体传感器

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yihao Li , Yulu Cao , Junjie Huang , Jiachen Zhang , Yonghong Wang , Yuanqing Wang , Ge Ning
{"title":"一种基于支链杂交反应信号放大的比色电化学双峰赭曲霉毒素配体传感器","authors":"Yihao Li ,&nbsp;Yulu Cao ,&nbsp;Junjie Huang ,&nbsp;Jiachen Zhang ,&nbsp;Yonghong Wang ,&nbsp;Yuanqing Wang ,&nbsp;Ge Ning","doi":"10.1016/j.bioelechem.2025.108984","DOIUrl":null,"url":null,"abstract":"<div><div>Ochratoxin A (OTA), a fungal toxin, induces various toxic effects in animals and humans through the enrichment of toxin residues. In this work, a dual-modal biosensor based on gold nanoparticles (AuNPs) and branched hybridization chain reaction (bHCR) was proposed for the detection of OTA. The strategy is contingent on OTA aptamer-bridged occurrence of bHCR and the salt-induced aggregation of AuNPs. OTA-apt/cDNA could be used to specifically identify the OTA and trigger bHCR reactions, producing a long-branched dsDNA polymer. The electroactive molecule-methylene blue (MB) can be inserted into the superstructure of branched DNA due to the formation of DNA polymers, leading to dynamic changes in MB redox signaling. The residual DNA hairpins were added and adhered to the surface of AuNPs, but they were inadequate to prevent the AuNPs from salt-induced aggregation. The dual-modal yields limits of detection of 4.8 pM (electrochemical assay) and 0.25 nM (colorimetric assay), respectively. It exhibited excellent specificity against common mycotoxins (AFB1, DON, FB1, ZEN), with satisfactory recoveries in corn flour (92.9–108.3 %). This aptasensor, which adopts a dual-modal strategy, features self-calibration to reduce false-positive results and improve accuracy. It demonstrates significant advantages in mycotoxin detection.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108984"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A colorimetric and electrochemical dual-modal ochratoxin a aptasensor based on branched hybridization chain reaction signal amplification\",\"authors\":\"Yihao Li ,&nbsp;Yulu Cao ,&nbsp;Junjie Huang ,&nbsp;Jiachen Zhang ,&nbsp;Yonghong Wang ,&nbsp;Yuanqing Wang ,&nbsp;Ge Ning\",\"doi\":\"10.1016/j.bioelechem.2025.108984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ochratoxin A (OTA), a fungal toxin, induces various toxic effects in animals and humans through the enrichment of toxin residues. In this work, a dual-modal biosensor based on gold nanoparticles (AuNPs) and branched hybridization chain reaction (bHCR) was proposed for the detection of OTA. The strategy is contingent on OTA aptamer-bridged occurrence of bHCR and the salt-induced aggregation of AuNPs. OTA-apt/cDNA could be used to specifically identify the OTA and trigger bHCR reactions, producing a long-branched dsDNA polymer. The electroactive molecule-methylene blue (MB) can be inserted into the superstructure of branched DNA due to the formation of DNA polymers, leading to dynamic changes in MB redox signaling. The residual DNA hairpins were added and adhered to the surface of AuNPs, but they were inadequate to prevent the AuNPs from salt-induced aggregation. The dual-modal yields limits of detection of 4.8 pM (electrochemical assay) and 0.25 nM (colorimetric assay), respectively. It exhibited excellent specificity against common mycotoxins (AFB1, DON, FB1, ZEN), with satisfactory recoveries in corn flour (92.9–108.3 %). This aptasensor, which adopts a dual-modal strategy, features self-calibration to reduce false-positive results and improve accuracy. It demonstrates significant advantages in mycotoxin detection.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"165 \",\"pages\":\"Article 108984\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425000878\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000878","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

赭曲霉毒素A (Ochratoxin A, OTA)是一种真菌毒素,通过毒素残留物的富集对动物和人类产生各种毒性作用。本文提出了一种基于金纳米粒子(AuNPs)和支链杂交链反应(bHCR)的双模生物传感器,用于OTA的检测。该策略取决于OTA适体桥接bHCR的发生和盐诱导的aunp聚集。OTA-apt/cDNA可用于特异性识别OTA并触发bHCR反应,生成长支链dsDNA聚合物。电活性分子亚甲基蓝(MB)可以通过DNA聚合物的形成插入到支链DNA的上层结构中,导致MB氧化还原信号的动态变化。添加了残留的DNA发夹并粘附在AuNPs表面,但它们不足以阻止AuNPs的盐诱导聚集。双模态的检出限分别为4.8 pM(电化学法)和0.25 nM(比色法)。该方法对常见真菌毒素(AFB1、DON、FB1、ZEN)具有良好的特异性,在玉米粉中的回收率为92.9 ~ 108.3%。该传感器采用双模态策略,具有自校准的特点,减少了假阳性结果,提高了精度。它在霉菌毒素检测中具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A colorimetric and electrochemical dual-modal ochratoxin a aptasensor based on branched hybridization chain reaction signal amplification
Ochratoxin A (OTA), a fungal toxin, induces various toxic effects in animals and humans through the enrichment of toxin residues. In this work, a dual-modal biosensor based on gold nanoparticles (AuNPs) and branched hybridization chain reaction (bHCR) was proposed for the detection of OTA. The strategy is contingent on OTA aptamer-bridged occurrence of bHCR and the salt-induced aggregation of AuNPs. OTA-apt/cDNA could be used to specifically identify the OTA and trigger bHCR reactions, producing a long-branched dsDNA polymer. The electroactive molecule-methylene blue (MB) can be inserted into the superstructure of branched DNA due to the formation of DNA polymers, leading to dynamic changes in MB redox signaling. The residual DNA hairpins were added and adhered to the surface of AuNPs, but they were inadequate to prevent the AuNPs from salt-induced aggregation. The dual-modal yields limits of detection of 4.8 pM (electrochemical assay) and 0.25 nM (colorimetric assay), respectively. It exhibited excellent specificity against common mycotoxins (AFB1, DON, FB1, ZEN), with satisfactory recoveries in corn flour (92.9–108.3 %). This aptasensor, which adopts a dual-modal strategy, features self-calibration to reduce false-positive results and improve accuracy. It demonstrates significant advantages in mycotoxin detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信