基于双irs的全双工(FD)双向设备到设备(D2D)通信

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shiguo Wang , Chang Lin , Rukhsana Ruby , Xiukai Ruan , Qingyong Deng
{"title":"基于双irs的全双工(FD)双向设备到设备(D2D)通信","authors":"Shiguo Wang ,&nbsp;Chang Lin ,&nbsp;Rukhsana Ruby ,&nbsp;Xiukai Ruan ,&nbsp;Qingyong Deng","doi":"10.1016/j.phycom.2025.102675","DOIUrl":null,"url":null,"abstract":"<div><div>For device-to-device (D2D) communications in the internet of things (IoT), when the direct links between terminals are unavailable owing to obstacles or severe fading, deploying intelligent reflecting surfaces (IRSs) is a promising solution to reconfigure channel environments for enhancing signal coverage and system capacity. In this paper, to improve system spectrum and energy efficiency, a novel full-duplex (FD) D2D communication model with dual IRSs is presented, where two IRSs are deployed closely to two FD transceivers for assisting the exchange of information between them. Given the budget of total transmit power, maximizing the achievable sum-rate of such IRS-assisted FD two-way system is formulated to optimize the precoding at the two transceivers and the phase shifts at the two IRSs. For such a coupled non-convex problem, we decouple it into two subproblems successfully, which can be solved in an alternate manner with low complexity. Simulation results are presented to validate the superior performance of the proposed D2D communication model compared to the existing models and similar optimization schemes.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102675"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-duplex (FD) two-way device-to-device (D2D) communications based on dual IRSs\",\"authors\":\"Shiguo Wang ,&nbsp;Chang Lin ,&nbsp;Rukhsana Ruby ,&nbsp;Xiukai Ruan ,&nbsp;Qingyong Deng\",\"doi\":\"10.1016/j.phycom.2025.102675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For device-to-device (D2D) communications in the internet of things (IoT), when the direct links between terminals are unavailable owing to obstacles or severe fading, deploying intelligent reflecting surfaces (IRSs) is a promising solution to reconfigure channel environments for enhancing signal coverage and system capacity. In this paper, to improve system spectrum and energy efficiency, a novel full-duplex (FD) D2D communication model with dual IRSs is presented, where two IRSs are deployed closely to two FD transceivers for assisting the exchange of information between them. Given the budget of total transmit power, maximizing the achievable sum-rate of such IRS-assisted FD two-way system is formulated to optimize the precoding at the two transceivers and the phase shifts at the two IRSs. For such a coupled non-convex problem, we decouple it into two subproblems successfully, which can be solved in an alternate manner with low complexity. Simulation results are presented to validate the superior performance of the proposed D2D communication model compared to the existing models and similar optimization schemes.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"71 \",\"pages\":\"Article 102675\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490725000783\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725000783","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于物联网(IoT)中的设备到设备(D2D)通信,当终端之间的直接链接由于障碍物或严重衰落而不可用时,部署智能反射面(IRSs)是重新配置信道环境以增强信号覆盖和系统容量的有前途的解决方案。为了提高系统的频谱和能量效率,本文提出了一种具有双irs的新型全双工(FD) D2D通信模型,其中两个irs紧密地部署在两个FD收发器上,以协助它们之间的信息交换。在总发射功率预算的情况下,制定最大可实现的irs辅助FD双向系统的和速率,以优化两个收发器的预编码和两个irs的相移。对于这样一个耦合的非凸问题,我们成功地将其解耦为两个子问题,这两个子问题可以用一种低复杂度的替代方法求解。仿真结果验证了所提出的D2D通信模型与现有模型和类似优化方案相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-duplex (FD) two-way device-to-device (D2D) communications based on dual IRSs
For device-to-device (D2D) communications in the internet of things (IoT), when the direct links between terminals are unavailable owing to obstacles or severe fading, deploying intelligent reflecting surfaces (IRSs) is a promising solution to reconfigure channel environments for enhancing signal coverage and system capacity. In this paper, to improve system spectrum and energy efficiency, a novel full-duplex (FD) D2D communication model with dual IRSs is presented, where two IRSs are deployed closely to two FD transceivers for assisting the exchange of information between them. Given the budget of total transmit power, maximizing the achievable sum-rate of such IRS-assisted FD two-way system is formulated to optimize the precoding at the two transceivers and the phase shifts at the two IRSs. For such a coupled non-convex problem, we decouple it into two subproblems successfully, which can be solved in an alternate manner with low complexity. Simulation results are presented to validate the superior performance of the proposed D2D communication model compared to the existing models and similar optimization schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信