利用高通量红光激活单分子跟踪技术原位监测膜蛋白动力学

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinyang Liu, Xuebo Zhang, Bingjie Zhao, Huan Ling, Yanzhong Li, Kuangshi Sun, Song Chen, Yanxin Zhang, Tianli Zhai, Yunxiang Zhang, Fuyou Li and Qian Liu*, 
{"title":"利用高通量红光激活单分子跟踪技术原位监测膜蛋白动力学","authors":"Jinyang Liu,&nbsp;Xuebo Zhang,&nbsp;Bingjie Zhao,&nbsp;Huan Ling,&nbsp;Yanzhong Li,&nbsp;Kuangshi Sun,&nbsp;Song Chen,&nbsp;Yanxin Zhang,&nbsp;Tianli Zhai,&nbsp;Yunxiang Zhang,&nbsp;Fuyou Li and Qian Liu*,&nbsp;","doi":"10.1021/acsnano.5c0318210.1021/acsnano.5c03182","DOIUrl":null,"url":null,"abstract":"<p >Single-molecule tracking offers nanometer resolution for studying individual molecule dynamics but is often limited by sparse labeling to avoid signal overlap. We present Red-Light-Activated Single-molecule Tracking (RE-LAST) strategy to address this challenge utilizing a photoactivatable probe, SiR670. SiR670 combines traditional silicon rhodamine with a photocage called SO, quenching fluorescence via photoinduced electron transfer (PET). Red light triggers SiR670 excitation, generating singlet oxygen that oxidizes the SO cage, halting PET and restoring fluorescence. RE-LAST used red light for both activation and imaging, eliminating harmful UV exposure. This method enables high-throughput single-molecule tracking, achieving approximately 9 times more tracks than conventional methods and allowing detailed classification of CD56 membrane protein motion. Furthermore, in situ imaging of single live cells revealed the effects of triplet quencher and oxygen scavenging system (OSS) on membrane protein dynamics. While triplet quenchers like Trolox had minimal impact on protein movement patterns, OSS significantly accelerated protein movement and increased the proportion of mobile proteins. This approach provides a comprehensive method for investigating membrane protein dynamics in living cells, contributing to further developments in cellular and molecular biology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 13","pages":"13466–13478 13466–13478"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Monitoring of Membrane Protein Dynamics Using High-Throughput Red-Light-Activated Single-Molecule Tracking\",\"authors\":\"Jinyang Liu,&nbsp;Xuebo Zhang,&nbsp;Bingjie Zhao,&nbsp;Huan Ling,&nbsp;Yanzhong Li,&nbsp;Kuangshi Sun,&nbsp;Song Chen,&nbsp;Yanxin Zhang,&nbsp;Tianli Zhai,&nbsp;Yunxiang Zhang,&nbsp;Fuyou Li and Qian Liu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0318210.1021/acsnano.5c03182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-molecule tracking offers nanometer resolution for studying individual molecule dynamics but is often limited by sparse labeling to avoid signal overlap. We present Red-Light-Activated Single-molecule Tracking (RE-LAST) strategy to address this challenge utilizing a photoactivatable probe, SiR670. SiR670 combines traditional silicon rhodamine with a photocage called SO, quenching fluorescence via photoinduced electron transfer (PET). Red light triggers SiR670 excitation, generating singlet oxygen that oxidizes the SO cage, halting PET and restoring fluorescence. RE-LAST used red light for both activation and imaging, eliminating harmful UV exposure. This method enables high-throughput single-molecule tracking, achieving approximately 9 times more tracks than conventional methods and allowing detailed classification of CD56 membrane protein motion. Furthermore, in situ imaging of single live cells revealed the effects of triplet quencher and oxygen scavenging system (OSS) on membrane protein dynamics. While triplet quenchers like Trolox had minimal impact on protein movement patterns, OSS significantly accelerated protein movement and increased the proportion of mobile proteins. This approach provides a comprehensive method for investigating membrane protein dynamics in living cells, contributing to further developments in cellular and molecular biology.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 13\",\"pages\":\"13466–13478 13466–13478\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03182\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03182","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单分子跟踪为研究单个分子动力学提供了纳米分辨率,但往往受到稀疏标记的限制,以避免信号重叠。我们提出了红光激活单分子跟踪(RE-LAST)策略,利用光激活探针SiR670来解决这一挑战。SiR670结合了传统的硅罗丹明和称为SO的光笼,通过光诱导电子转移(PET)猝灭荧光。红光触发SiR670激发,产生单线态氧,氧化SO笼,使PET停止并恢复荧光。RE-LAST使用红光进行激活和成像,消除有害的紫外线暴露。该方法实现了高通量单分子跟踪,比传统方法实现了大约9倍的跟踪,并允许CD56膜蛋白运动的详细分类。此外,单个活细胞的原位成像揭示了三重态猝灭和氧清除系统(OSS)对膜蛋白动力学的影响。虽然像Trolox这样的三重态猝灭剂对蛋白质运动模式的影响很小,但OSS显著加速了蛋白质运动并增加了移动蛋白质的比例。该方法为研究活细胞中的膜蛋白动力学提供了一种全面的方法,有助于细胞和分子生物学的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Monitoring of Membrane Protein Dynamics Using High-Throughput Red-Light-Activated Single-Molecule Tracking

In Situ Monitoring of Membrane Protein Dynamics Using High-Throughput Red-Light-Activated Single-Molecule Tracking

Single-molecule tracking offers nanometer resolution for studying individual molecule dynamics but is often limited by sparse labeling to avoid signal overlap. We present Red-Light-Activated Single-molecule Tracking (RE-LAST) strategy to address this challenge utilizing a photoactivatable probe, SiR670. SiR670 combines traditional silicon rhodamine with a photocage called SO, quenching fluorescence via photoinduced electron transfer (PET). Red light triggers SiR670 excitation, generating singlet oxygen that oxidizes the SO cage, halting PET and restoring fluorescence. RE-LAST used red light for both activation and imaging, eliminating harmful UV exposure. This method enables high-throughput single-molecule tracking, achieving approximately 9 times more tracks than conventional methods and allowing detailed classification of CD56 membrane protein motion. Furthermore, in situ imaging of single live cells revealed the effects of triplet quencher and oxygen scavenging system (OSS) on membrane protein dynamics. While triplet quenchers like Trolox had minimal impact on protein movement patterns, OSS significantly accelerated protein movement and increased the proportion of mobile proteins. This approach provides a comprehensive method for investigating membrane protein dynamics in living cells, contributing to further developments in cellular and molecular biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信