{"title":"用局部表面等离子体共振光谱定量分析海藻糖对淀粉样蛋白-β结合膜的影响","authors":"Yue Xu, Danielle M. McRae and Zoya Leonenko*, ","doi":"10.1021/acsomega.4c0703810.1021/acsomega.4c07038","DOIUrl":null,"url":null,"abstract":"<p >The damaging effect of amyloid-β (Aβ) on cellular membranes is an essential factor that contributes to Aβ’s neurotoxicity in Alzheimer’s disease. In this work, we explore the role of trehalose sugar in protecting model lipid membranes composed of DPPC-POPC-Cholesterol against Aβ toxicity. We used localized surface plasmon resonance (LSPR) spectroscopy and conducted a quantitative analysis to study the influence of trehalose on Aβ-membrane interactions. The LSPR data indicate that trehalose can effectively reduce the level of binding of Aβ to the lipid membrane, indicating its protective role against amyloid toxicity. Additionally, atomic force microscopy (AFM) was used to visualize the lipid membranes supported on the LSPR sensors and to elucidate the effect of trehalose on membrane morphology. The ability of trehalose to alter the physical properties of model membranes is discussed in relation to its protective role against Aβ during dehydration.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 13","pages":"12872–12879 12872–12879"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07038","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of the Influence of Trehalose on Amyloid-β Binding to Membranes by Localized Surface Plasmon Resonance Spectroscopy\",\"authors\":\"Yue Xu, Danielle M. McRae and Zoya Leonenko*, \",\"doi\":\"10.1021/acsomega.4c0703810.1021/acsomega.4c07038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The damaging effect of amyloid-β (Aβ) on cellular membranes is an essential factor that contributes to Aβ’s neurotoxicity in Alzheimer’s disease. In this work, we explore the role of trehalose sugar in protecting model lipid membranes composed of DPPC-POPC-Cholesterol against Aβ toxicity. We used localized surface plasmon resonance (LSPR) spectroscopy and conducted a quantitative analysis to study the influence of trehalose on Aβ-membrane interactions. The LSPR data indicate that trehalose can effectively reduce the level of binding of Aβ to the lipid membrane, indicating its protective role against amyloid toxicity. Additionally, atomic force microscopy (AFM) was used to visualize the lipid membranes supported on the LSPR sensors and to elucidate the effect of trehalose on membrane morphology. The ability of trehalose to alter the physical properties of model membranes is discussed in relation to its protective role against Aβ during dehydration.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 13\",\"pages\":\"12872–12879 12872–12879\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c07038\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07038","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantitative Analysis of the Influence of Trehalose on Amyloid-β Binding to Membranes by Localized Surface Plasmon Resonance Spectroscopy
The damaging effect of amyloid-β (Aβ) on cellular membranes is an essential factor that contributes to Aβ’s neurotoxicity in Alzheimer’s disease. In this work, we explore the role of trehalose sugar in protecting model lipid membranes composed of DPPC-POPC-Cholesterol against Aβ toxicity. We used localized surface plasmon resonance (LSPR) spectroscopy and conducted a quantitative analysis to study the influence of trehalose on Aβ-membrane interactions. The LSPR data indicate that trehalose can effectively reduce the level of binding of Aβ to the lipid membrane, indicating its protective role against amyloid toxicity. Additionally, atomic force microscopy (AFM) was used to visualize the lipid membranes supported on the LSPR sensors and to elucidate the effect of trehalose on membrane morphology. The ability of trehalose to alter the physical properties of model membranes is discussed in relation to its protective role against Aβ during dehydration.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.