光驱动微纳电机的材料选择、制备、驱动及应用综述

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-04-07 DOI:10.1039/D4NR05202A
Lingcong He, Tao He, Yonghui Yang and Xue-Bo Chen
{"title":"光驱动微纳电机的材料选择、制备、驱动及应用综述","authors":"Lingcong He, Tao He, Yonghui Yang and Xue-Bo Chen","doi":"10.1039/D4NR05202A","DOIUrl":null,"url":null,"abstract":"<p >As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 19","pages":" 11894-11933"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material selection, preparation, driving and applications of light-driven micro/nano motors: a review\",\"authors\":\"Lingcong He, Tao He, Yonghui Yang and Xue-Bo Chen\",\"doi\":\"10.1039/D4NR05202A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 19\",\"pages\":\" 11894-11933\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05202a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05202a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光作为一种外部能量刺激,在驱动微纳电机运动时具有可逆性、无线性和远程可操作性等优点。尽管在过去的二十年里,关于光驱动微纳米电机(LDMNMs)的文章发表了大量,但从材料选择、设计、制备、驱动到应用等方面对LDMNMs的综述仍然很少。因此,有必要突出光作为驱动mnm的激励能源的优越性,促进ldmnm的持续发展,让新人对这一领域有一个更基础和全面的认识。本文综述了ldnmn的先进制备方法,并对各种技术的优缺点进行了全面比较。此外,本文还介绍了围绕LDMNMs构建不对称场的一般设计策略,以及各种光活性材料,包括光催化、光热和光诱导异构化材料。下一节将详细描述LDMNMs现有的推进机制和运动学行为,包括光催化氧化、光热效应和光诱导异构化。详细分析了各种驱动机构的工作原理,总结了它们的优缺点。最后,对其在生物医学、环境修复等领域的潜在应用进行了综述,并对其未来的发展前景进行了展望,以期克服主要挑战
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Material selection, preparation, driving and applications of light-driven micro/nano motors: a review

Material selection, preparation, driving and applications of light-driven micro/nano motors: a review

As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信