Jiale Lou, Youngji Joh, Thomas L. Delworth, Liwei Jia
{"title":"确定美国西南部水汽压亏缺变率的可预测性来源","authors":"Jiale Lou, Youngji Joh, Thomas L. Delworth, Liwei Jia","doi":"10.1038/s41612-025-01028-6","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric vapor pressure deficit (VPD) measures the difference between saturation vapor pressure and actual vapor pressure, and its variability is closely related to fire activity in the western United States (US). Here, we assess the forecast skill of monthly VPD variability using a state-of-the-art dynamical forecast system and statistical predictions, such as the persistence forecast and model-analog forecasts. In the model-analog framework, we select analog states resembling the observed initial conditions from the model space, and the subsequent evolution of those initial model-analogs yields forecast ensembles. Dynamical forecasts demonstrate skillful predictions of VPD variability in the western US, exceeding the persistence forecast skill, which indicates additional sources of VPD predictability within the climate system. To quantify the contribution of different climate variables to VPD prediction, we develop a weighted model-analog forecast and evaluate its skill in comparison to VPD-only and unweighted forecasts. Our findings suggest that sea surface temperature is a critical source of VPD predictability over the western US. The optimally weighted model-analog exhibits forecast skill for VPD variability comparable to that of the dynamical forecast system.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"57 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying source of predictability for vapor pressure deficit variability in the southwestern United States\",\"authors\":\"Jiale Lou, Youngji Joh, Thomas L. Delworth, Liwei Jia\",\"doi\":\"10.1038/s41612-025-01028-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric vapor pressure deficit (VPD) measures the difference between saturation vapor pressure and actual vapor pressure, and its variability is closely related to fire activity in the western United States (US). Here, we assess the forecast skill of monthly VPD variability using a state-of-the-art dynamical forecast system and statistical predictions, such as the persistence forecast and model-analog forecasts. In the model-analog framework, we select analog states resembling the observed initial conditions from the model space, and the subsequent evolution of those initial model-analogs yields forecast ensembles. Dynamical forecasts demonstrate skillful predictions of VPD variability in the western US, exceeding the persistence forecast skill, which indicates additional sources of VPD predictability within the climate system. To quantify the contribution of different climate variables to VPD prediction, we develop a weighted model-analog forecast and evaluate its skill in comparison to VPD-only and unweighted forecasts. Our findings suggest that sea surface temperature is a critical source of VPD predictability over the western US. The optimally weighted model-analog exhibits forecast skill for VPD variability comparable to that of the dynamical forecast system.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01028-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01028-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Identifying source of predictability for vapor pressure deficit variability in the southwestern United States
Atmospheric vapor pressure deficit (VPD) measures the difference between saturation vapor pressure and actual vapor pressure, and its variability is closely related to fire activity in the western United States (US). Here, we assess the forecast skill of monthly VPD variability using a state-of-the-art dynamical forecast system and statistical predictions, such as the persistence forecast and model-analog forecasts. In the model-analog framework, we select analog states resembling the observed initial conditions from the model space, and the subsequent evolution of those initial model-analogs yields forecast ensembles. Dynamical forecasts demonstrate skillful predictions of VPD variability in the western US, exceeding the persistence forecast skill, which indicates additional sources of VPD predictability within the climate system. To quantify the contribution of different climate variables to VPD prediction, we develop a weighted model-analog forecast and evaluate its skill in comparison to VPD-only and unweighted forecasts. Our findings suggest that sea surface temperature is a critical source of VPD predictability over the western US. The optimally weighted model-analog exhibits forecast skill for VPD variability comparable to that of the dynamical forecast system.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.