用于节能神经形态计算的无铅Cs3Bi2I9钙钛矿记忆电阻器

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sujaya Kumar Vishwanath, Chaya Karkera, Tauheed Mohammad, Pritish Sharma, Rantej Naik Badavathu, Upanya Khandelwal, Anil Kanwat, Poulomi Chakrabarty, Devamrutha Suresh, Shubham Sahay, Aditya Sadhanala
{"title":"用于节能神经形态计算的无铅Cs3Bi2I9钙钛矿记忆电阻器","authors":"Sujaya Kumar Vishwanath, Chaya Karkera, Tauheed Mohammad, Pritish Sharma, Rantej Naik Badavathu, Upanya Khandelwal, Anil Kanwat, Poulomi Chakrabarty, Devamrutha Suresh, Shubham Sahay, Aditya Sadhanala","doi":"10.1021/acsenergylett.5c00411","DOIUrl":null,"url":null,"abstract":"In-memory computing offers a transformative alternative to traditional von Neumann architecture, with memristors enabling accelerated, low-power computation. Halide perovskites, known for ion migration with low activation energy and synapse-like switching behavior, hold great potential but face challenges in conductance linearity and predictability. Here, we report flexible lead-free Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> 8 × 8 crossbar memristors exhibiting bipolar resistive switching with a high on/off ratio (10<sup>6</sup>), endurance (10<sup>4</sup> cycles), long retention (10<sup>5</sup> s), and a device yield exceeding 93%. Electrical pulse engineering reveals synaptic behaviors such as paired-pulse facilitation, potentiation, and depression with excellent linearity and minimal variability. In situ training of artificial neural networks, including MLP and VGG-8, achieves 88.19% accuracy on reduced MNIST and 91.38% on CIFAR-10 data sets. This work demonstrates energy-efficient, high-performance neuromorphic hardware, paving the way for advanced parallel computing to address the growing demands of AI and data science.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"28 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lead-Free Cs3Bi2I9 Perovskite Memristors for Energy-Efficient Neuromorphic Computing\",\"authors\":\"Sujaya Kumar Vishwanath, Chaya Karkera, Tauheed Mohammad, Pritish Sharma, Rantej Naik Badavathu, Upanya Khandelwal, Anil Kanwat, Poulomi Chakrabarty, Devamrutha Suresh, Shubham Sahay, Aditya Sadhanala\",\"doi\":\"10.1021/acsenergylett.5c00411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-memory computing offers a transformative alternative to traditional von Neumann architecture, with memristors enabling accelerated, low-power computation. Halide perovskites, known for ion migration with low activation energy and synapse-like switching behavior, hold great potential but face challenges in conductance linearity and predictability. Here, we report flexible lead-free Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> 8 × 8 crossbar memristors exhibiting bipolar resistive switching with a high on/off ratio (10<sup>6</sup>), endurance (10<sup>4</sup> cycles), long retention (10<sup>5</sup> s), and a device yield exceeding 93%. Electrical pulse engineering reveals synaptic behaviors such as paired-pulse facilitation, potentiation, and depression with excellent linearity and minimal variability. In situ training of artificial neural networks, including MLP and VGG-8, achieves 88.19% accuracy on reduced MNIST and 91.38% on CIFAR-10 data sets. This work demonstrates energy-efficient, high-performance neuromorphic hardware, paving the way for advanced parallel computing to address the growing demands of AI and data science.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c00411\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00411","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

内存计算为传统的冯·诺伊曼架构提供了一种变革性的替代方案,记忆电阻器实现了加速、低功耗的计算。卤化物钙钛矿以具有低活化能和突触样开关行为的离子迁移而闻名,具有巨大的潜力,但在电导线性和可预测性方面面临挑战。在这里,我们报告了柔性无铅Cs3Bi2I9 8 × 8横棒记忆电阻器,具有双极电阻开关,具有高开/关比(106),持久时间(104周期),长保持时间(105 s)和超过93%的器件良率。电脉冲工程揭示了突触行为,如成对脉冲的促进、增强和抑制,具有良好的线性和最小的可变性。包括MLP和VGG-8在内的人工神经网络的原位训练在约简MNIST上的准确率为88.19%,在CIFAR-10数据集上的准确率为91.38%。这项工作展示了节能、高性能的神经形态硬件,为先进的并行计算铺平了道路,以满足人工智能和数据科学日益增长的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lead-Free Cs3Bi2I9 Perovskite Memristors for Energy-Efficient Neuromorphic Computing

Lead-Free Cs3Bi2I9 Perovskite Memristors for Energy-Efficient Neuromorphic Computing
In-memory computing offers a transformative alternative to traditional von Neumann architecture, with memristors enabling accelerated, low-power computation. Halide perovskites, known for ion migration with low activation energy and synapse-like switching behavior, hold great potential but face challenges in conductance linearity and predictability. Here, we report flexible lead-free Cs3Bi2I9 8 × 8 crossbar memristors exhibiting bipolar resistive switching with a high on/off ratio (106), endurance (104 cycles), long retention (105 s), and a device yield exceeding 93%. Electrical pulse engineering reveals synaptic behaviors such as paired-pulse facilitation, potentiation, and depression with excellent linearity and minimal variability. In situ training of artificial neural networks, including MLP and VGG-8, achieves 88.19% accuracy on reduced MNIST and 91.38% on CIFAR-10 data sets. This work demonstrates energy-efficient, high-performance neuromorphic hardware, paving the way for advanced parallel computing to address the growing demands of AI and data science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信