Tao Chen, Xinkai Zhang, Hangchao Wang, Chonglin Yuan, Yuxuan Zuo, Chuan Gao, Wukun Xiao, Yue Yu, Junfei Cai, Tie Luo, Yan Xiang, Dingguo Xia
{"title":"反位缺陷释放了高熵金属间化合物在氧还原反应中的催化潜力","authors":"Tao Chen, Xinkai Zhang, Hangchao Wang, Chonglin Yuan, Yuxuan Zuo, Chuan Gao, Wukun Xiao, Yue Yu, Junfei Cai, Tie Luo, Yan Xiang, Dingguo Xia","doi":"10.1038/s41467-025-58679-5","DOIUrl":null,"url":null,"abstract":"<p>Developing highly active, low-cost, and durable catalysts for efficient oxygen reduction reactions remain a challenge, hindering the commercial viability of proton exchange membrane fuel cells (PEMFCs). In this study, an ordered PtZnFeCoNiCr high-entropy intermetallic electrocatalyst with Pt antisite point defects (PD-PZFCNC-HEI) is synthesized. The electrocatalyst shows high mass activity of 4.12 A mg<sub>Pt</sub><sup>-1</sup> toward the oxygen reduction reaction (ORR), which is 33 times that of the commercial Pt/C. PEMFC, assembled with PD-PZFCNC-HEI as the cathode (0.05 mg<sub>Pt</sub> cm<sup>-2</sup>), exhibits a peak power density of 1.9 W cm<sup>-2</sup> and a high mass activity of 3.0 A mg<sub>Pt</sub><sup>-1</sup> at 0.9 V. Theoretical calculations combined with in situ X-ray absorption fine structure results reveal that defect engineering optimizes Pt’s electronic structure and activates non-noble metal site active centers, achieving exceptionally high ORR catalytic activity. This study provides guidance for the development of nanostructured ordered high-entropy intermetallic catalysts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antisite defect unleashes catalytic potential in high-entropy intermetallics for oxygen reduction reaction\",\"authors\":\"Tao Chen, Xinkai Zhang, Hangchao Wang, Chonglin Yuan, Yuxuan Zuo, Chuan Gao, Wukun Xiao, Yue Yu, Junfei Cai, Tie Luo, Yan Xiang, Dingguo Xia\",\"doi\":\"10.1038/s41467-025-58679-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing highly active, low-cost, and durable catalysts for efficient oxygen reduction reactions remain a challenge, hindering the commercial viability of proton exchange membrane fuel cells (PEMFCs). In this study, an ordered PtZnFeCoNiCr high-entropy intermetallic electrocatalyst with Pt antisite point defects (PD-PZFCNC-HEI) is synthesized. The electrocatalyst shows high mass activity of 4.12 A mg<sub>Pt</sub><sup>-1</sup> toward the oxygen reduction reaction (ORR), which is 33 times that of the commercial Pt/C. PEMFC, assembled with PD-PZFCNC-HEI as the cathode (0.05 mg<sub>Pt</sub> cm<sup>-2</sup>), exhibits a peak power density of 1.9 W cm<sup>-2</sup> and a high mass activity of 3.0 A mg<sub>Pt</sub><sup>-1</sup> at 0.9 V. Theoretical calculations combined with in situ X-ray absorption fine structure results reveal that defect engineering optimizes Pt’s electronic structure and activates non-noble metal site active centers, achieving exceptionally high ORR catalytic activity. This study provides guidance for the development of nanostructured ordered high-entropy intermetallic catalysts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58679-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58679-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
为高效氧还原反应开发高活性、低成本、耐用的催化剂仍然是一个挑战,这阻碍了质子交换膜燃料电池(pemfc)的商业可行性。本研究合成了一种具有Pt对位点缺陷的有序PtZnFeCoNiCr高熵金属间电催化剂(pd - pzfnc - hei)。电催化剂对氧还原反应(ORR)的质量活性为4.12 A mgPt-1,是商用Pt/C的33倍。以pd - pzfnc - hei为阴极(0.05 mgPt cm-2)组装的PEMFC,在0.9 V时显示出1.9 W cm-2的峰值功率密度和3.0 a mgPt-1的高质量活性。理论计算结合原位x射线吸收精细结构结果表明,缺陷工程优化了Pt的电子结构,激活了非贵金属位活性中心,实现了异常高的ORR催化活性。该研究为纳米结构有序高熵金属间催化剂的开发提供了指导。
Antisite defect unleashes catalytic potential in high-entropy intermetallics for oxygen reduction reaction
Developing highly active, low-cost, and durable catalysts for efficient oxygen reduction reactions remain a challenge, hindering the commercial viability of proton exchange membrane fuel cells (PEMFCs). In this study, an ordered PtZnFeCoNiCr high-entropy intermetallic electrocatalyst with Pt antisite point defects (PD-PZFCNC-HEI) is synthesized. The electrocatalyst shows high mass activity of 4.12 A mgPt-1 toward the oxygen reduction reaction (ORR), which is 33 times that of the commercial Pt/C. PEMFC, assembled with PD-PZFCNC-HEI as the cathode (0.05 mgPt cm-2), exhibits a peak power density of 1.9 W cm-2 and a high mass activity of 3.0 A mgPt-1 at 0.9 V. Theoretical calculations combined with in situ X-ray absorption fine structure results reveal that defect engineering optimizes Pt’s electronic structure and activates non-noble metal site active centers, achieving exceptionally high ORR catalytic activity. This study provides guidance for the development of nanostructured ordered high-entropy intermetallic catalysts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.