使用金属或介电超表面的microled的增强和定向电致发光。

Mohamed S Abdelkhalik, Xavier Garcia-Santiago, Thomas-Jan van Raaij, Toni López, Anton Matthijs Berghuis, Lianne M A de Jong, Jaime Gómez Rivas
{"title":"使用金属或介电超表面的microled的增强和定向电致发光。","authors":"Mohamed S Abdelkhalik, Xavier Garcia-Santiago, Thomas-Jan van Raaij, Toni López, Anton Matthijs Berghuis, Lianne M A de Jong, Jaime Gómez Rivas","doi":"10.1038/s44172-025-00401-w","DOIUrl":null,"url":null,"abstract":"<p><p>Micro light-emitting diode devices (microLEDs) have the potential to lead the next generation of displays. However, their integration for achieving high brightness is severely limited by the challenge of their low external quantum efficiency (EQE). Another limiting factor of such devices is their Lambertian emission, which requires secondary optics to beam the emitted light in defined directions. To address these limitations, we introduce metallic and dielectric metasurfaces to improve light outcoupling efficiency and control the emission directionality of blue LEDs with micrometer size. The proposed mechanism relies on the interaction between light emitted by multiple quantum wells (MQWs) and metasurfaces supporting collective resonances that result from the coupling of localized resonances in nanoparticles throughout the array. We implemented a hexagonal diffraction lattice of resonant Al and SiO<sub>2</sub> nanoparticles in LED devices to achieve reshaping of the far-field electroluminescence, thus demonstrating light beam control capabilities on these emitters. To expand and validate the proposed approach for small LED devices (even at the sub-micrometer scale), we integrate a subdiffraction lattice of Al nanoparticles into the device's architecture. Implementing the proposed design allows us to control the generated light and achieve enhanced far-field emission.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"63"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced and directional electroluminescence from MicroLEDs using metallic or dielectric metasurfaces.\",\"authors\":\"Mohamed S Abdelkhalik, Xavier Garcia-Santiago, Thomas-Jan van Raaij, Toni López, Anton Matthijs Berghuis, Lianne M A de Jong, Jaime Gómez Rivas\",\"doi\":\"10.1038/s44172-025-00401-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro light-emitting diode devices (microLEDs) have the potential to lead the next generation of displays. However, their integration for achieving high brightness is severely limited by the challenge of their low external quantum efficiency (EQE). Another limiting factor of such devices is their Lambertian emission, which requires secondary optics to beam the emitted light in defined directions. To address these limitations, we introduce metallic and dielectric metasurfaces to improve light outcoupling efficiency and control the emission directionality of blue LEDs with micrometer size. The proposed mechanism relies on the interaction between light emitted by multiple quantum wells (MQWs) and metasurfaces supporting collective resonances that result from the coupling of localized resonances in nanoparticles throughout the array. We implemented a hexagonal diffraction lattice of resonant Al and SiO<sub>2</sub> nanoparticles in LED devices to achieve reshaping of the far-field electroluminescence, thus demonstrating light beam control capabilities on these emitters. To expand and validate the proposed approach for small LED devices (even at the sub-micrometer scale), we integrate a subdiffraction lattice of Al nanoparticles into the device's architecture. Implementing the proposed design allows us to control the generated light and achieve enhanced far-field emission.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00401-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00401-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微型发光二极管器件(microled)具有引领下一代显示器的潜力。然而,低外量子效率(EQE)的挑战严重限制了它们实现高亮度的集成。这种装置的另一个限制因素是它们的朗伯发射,这需要二次光学系统将发射的光向指定的方向发射。为了解决这些限制,我们引入金属和介电超表面来提高光解耦效率并控制微米尺寸蓝色led的发射方向性。所提出的机制依赖于多个量子阱(mqw)发出的光与支持集体共振的超表面之间的相互作用,这种集体共振是由整个阵列中纳米颗粒的局部共振耦合产生的。我们在LED器件中实现了谐振Al和SiO2纳米颗粒的六角形衍射晶格,以实现远场电致发光的重塑,从而展示了这些发射器的光束控制能力。为了扩展和验证小型LED器件(甚至在亚微米尺度上)所提出的方法,我们将Al纳米颗粒的亚衍射晶格集成到器件的架构中。实施所提出的设计使我们能够控制产生的光并实现增强的远场发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced and directional electroluminescence from MicroLEDs using metallic or dielectric metasurfaces.

Micro light-emitting diode devices (microLEDs) have the potential to lead the next generation of displays. However, their integration for achieving high brightness is severely limited by the challenge of their low external quantum efficiency (EQE). Another limiting factor of such devices is their Lambertian emission, which requires secondary optics to beam the emitted light in defined directions. To address these limitations, we introduce metallic and dielectric metasurfaces to improve light outcoupling efficiency and control the emission directionality of blue LEDs with micrometer size. The proposed mechanism relies on the interaction between light emitted by multiple quantum wells (MQWs) and metasurfaces supporting collective resonances that result from the coupling of localized resonances in nanoparticles throughout the array. We implemented a hexagonal diffraction lattice of resonant Al and SiO2 nanoparticles in LED devices to achieve reshaping of the far-field electroluminescence, thus demonstrating light beam control capabilities on these emitters. To expand and validate the proposed approach for small LED devices (even at the sub-micrometer scale), we integrate a subdiffraction lattice of Al nanoparticles into the device's architecture. Implementing the proposed design allows us to control the generated light and achieve enhanced far-field emission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信