利用注意力和稀疏字典学习对单细胞扰动数据进行可解释建模

Cell systems Pub Date : 2025-04-16 Epub Date: 2025-04-04 DOI:10.1016/j.cels.2025.101245
Yang Xu, Stephen Fleming, Matthew Tegtmeyer, Steven A McCarroll, Mehrtash Babadi
{"title":"利用注意力和稀疏字典学习对单细胞扰动数据进行可解释建模","authors":"Yang Xu, Stephen Fleming, Matthew Tegtmeyer, Steven A McCarroll, Mehrtash Babadi","doi":"10.1016/j.cels.2025.101245","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations and unraveling the intricate molecular mechanisms governing cellular behavior. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding inherent response heterogeneity associated with cell state diversity and model explainability. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs and utilizes an attention mechanism to capture correspondence between cell state and perturbation response. We thoroughly evaluate CellCap's interpretability using multiple simulated scenarios as well as two real single-cell perturbation datasets. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling insights overlooked in previous analyses.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101245"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable modeling of single-cell perturbation data using attention and sparse dictionary learning.\",\"authors\":\"Yang Xu, Stephen Fleming, Matthew Tegtmeyer, Steven A McCarroll, Mehrtash Babadi\",\"doi\":\"10.1016/j.cels.2025.101245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations and unraveling the intricate molecular mechanisms governing cellular behavior. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding inherent response heterogeneity associated with cell state diversity and model explainability. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs and utilizes an attention mechanism to capture correspondence between cell state and perturbation response. We thoroughly evaluate CellCap's interpretability using multiple simulated scenarios as well as two real single-cell perturbation datasets. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling insights overlooked in previous analyses.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞转录组学与遗传和复合扰动相结合,为探索不同背景下的细胞行为提供了一种强有力的方法。这样的实验可以揭示细胞状态对扰动的特定反应,并揭示控制细胞行为的复杂分子机制。然而,目前的计算方法主要集中在预测平均细胞反应上,忽视了与细胞状态多样性和模型可解释性相关的固有反应异质性。在这项研究中,我们提出了CellCap,这是一个为单细胞扰动实验的端到端分析而设计的深度生成模型。CellCap在潜在空间中使用稀疏字典学习将细胞状态特异性扰动响应解构为一组转录响应程序,并利用注意机制捕获细胞状态和扰动响应之间的对应关系。我们使用多个模拟场景以及两个真实的单细胞扰动数据集彻底评估CellCap的可解释性。我们的结果表明,CellCap成功地揭示了细胞状态和扰动响应之间的关系,揭示了在以前的分析中被忽视的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable modeling of single-cell perturbation data using attention and sparse dictionary learning.

Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations and unraveling the intricate molecular mechanisms governing cellular behavior. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding inherent response heterogeneity associated with cell state diversity and model explainability. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs and utilizes an attention mechanism to capture correspondence between cell state and perturbation response. We thoroughly evaluate CellCap's interpretability using multiple simulated scenarios as well as two real single-cell perturbation datasets. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling insights overlooked in previous analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信