Dock H Duncan, Norman Forschack, Dirk van Moorselaar, Matthias M Müller, Jan Theeuwes
{"title":"学习调节对分散刺激的早期脑电图反应:一项综合SSVEP和ERP研究。","authors":"Dock H Duncan, Norman Forschack, Dirk van Moorselaar, Matthias M Müller, Jan Theeuwes","doi":"10.1523/JNEUROSCI.1973-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Through experience, humans can learn to suppress locations that frequently contain distracting stimuli. However, the neural mechanism underlying learned suppression remains largely unknown. In this study, we combined steady-state visually evoked potentials (SSVEPs) with event-related potentials (ERPs) to investigate the mechanism behind statistically learned spatial suppression. Twenty-four male and female human participants performed a version of the additional singleton search task in which one location contained a distractor stimulus frequently. The search stimuli constantly flickered on-and-off the screen, resulting in steady-state entrainment. Prior to search onset, no differences in the SSVEP response were found, though a post hoc analysis did reveal proactive alpha lateralization. Following search onset, clear evoked differences in both the SSVEP and ERP signals emerged at the suppressed location relative to all other locations. Crucially, the early timing of these evoked modulations suggests that learned distractor suppression occurs at the initial stages of visual processing.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096050/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning Modulates Early Encephalographic Responses to Distracting Stimuli: A Combined SSVEP and ERP Study.\",\"authors\":\"Dock H Duncan, Norman Forschack, Dirk van Moorselaar, Matthias M Müller, Jan Theeuwes\",\"doi\":\"10.1523/JNEUROSCI.1973-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Through experience, humans can learn to suppress locations that frequently contain distracting stimuli. However, the neural mechanism underlying learned suppression remains largely unknown. In this study, we combined steady-state visually evoked potentials (SSVEPs) with event-related potentials (ERPs) to investigate the mechanism behind statistically learned spatial suppression. Twenty-four male and female human participants performed a version of the additional singleton search task in which one location contained a distractor stimulus frequently. The search stimuli constantly flickered on-and-off the screen, resulting in steady-state entrainment. Prior to search onset, no differences in the SSVEP response were found, though a post hoc analysis did reveal proactive alpha lateralization. Following search onset, clear evoked differences in both the SSVEP and ERP signals emerged at the suppressed location relative to all other locations. Crucially, the early timing of these evoked modulations suggests that learned distractor suppression occurs at the initial stages of visual processing.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096050/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.1973-24.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1973-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Learning Modulates Early Encephalographic Responses to Distracting Stimuli: A Combined SSVEP and ERP Study.
Through experience, humans can learn to suppress locations that frequently contain distracting stimuli. However, the neural mechanism underlying learned suppression remains largely unknown. In this study, we combined steady-state visually evoked potentials (SSVEPs) with event-related potentials (ERPs) to investigate the mechanism behind statistically learned spatial suppression. Twenty-four male and female human participants performed a version of the additional singleton search task in which one location contained a distractor stimulus frequently. The search stimuli constantly flickered on-and-off the screen, resulting in steady-state entrainment. Prior to search onset, no differences in the SSVEP response were found, though a post hoc analysis did reveal proactive alpha lateralization. Following search onset, clear evoked differences in both the SSVEP and ERP signals emerged at the suppressed location relative to all other locations. Crucially, the early timing of these evoked modulations suggests that learned distractor suppression occurs at the initial stages of visual processing.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles