利用蜜蜂花粉检测转基因油菜籽的方法。

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Rong Yuan, Miao Wang, Zhen Li, Meiyan Hong, Li Su, Gang Wu, Xinhua Zeng
{"title":"利用蜜蜂花粉检测转基因油菜籽的方法。","authors":"Rong Yuan, Miao Wang, Zhen Li, Meiyan Hong, Li Su, Gang Wu, Xinhua Zeng","doi":"10.1007/s11248-025-00438-9","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous expansion of the planting area of genetically modified (GM) crops, the demand for efficient and comprehensive monitoring systems is becoming increasingly urgent. To establish a method suitable for large-scale monitoring of genetically modified rapeseed planting, beehives were strategically deployed at specific locations around genetically modified rapeseed fields, and the TaqMan quantitative PCR (qPCR) method was used to detect and analyze the genetically modified components in the rapeseed pollen collected by bees. The results demonstrated that the average Ct values for the CaMV35S promoter, Bar gene, NPTII gene, and HPT gene in the pollen of each hive were 27.91, 29.58, 31.49, and 31.97, respectively. The average ΔCt values for these four genes in hive pollen from 100 to 200 m were - 0.35, 1.66, 2.58, and 5.06, respectively, which were significantly lower than those from 300 to 1100 m (2.85, 4.01, 6.66, and 5.63). The results of this study have demonstrated the feasibility of using pollen collected by bees for large-scale detection of genetically modified rapeseed plants. This early warning model for GM crop spread based on bee pollination provides an efficient and practical solution for monitoring and managing genetically modified crops.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"18"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for detecting transgenic rapeseed using pollen collected by Apis mellifera L.\",\"authors\":\"Rong Yuan, Miao Wang, Zhen Li, Meiyan Hong, Li Su, Gang Wu, Xinhua Zeng\",\"doi\":\"10.1007/s11248-025-00438-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous expansion of the planting area of genetically modified (GM) crops, the demand for efficient and comprehensive monitoring systems is becoming increasingly urgent. To establish a method suitable for large-scale monitoring of genetically modified rapeseed planting, beehives were strategically deployed at specific locations around genetically modified rapeseed fields, and the TaqMan quantitative PCR (qPCR) method was used to detect and analyze the genetically modified components in the rapeseed pollen collected by bees. The results demonstrated that the average Ct values for the CaMV35S promoter, Bar gene, NPTII gene, and HPT gene in the pollen of each hive were 27.91, 29.58, 31.49, and 31.97, respectively. The average ΔCt values for these four genes in hive pollen from 100 to 200 m were - 0.35, 1.66, 2.58, and 5.06, respectively, which were significantly lower than those from 300 to 1100 m (2.85, 4.01, 6.66, and 5.63). The results of this study have demonstrated the feasibility of using pollen collected by bees for large-scale detection of genetically modified rapeseed plants. This early warning model for GM crop spread based on bee pollination provides an efficient and practical solution for monitoring and managing genetically modified crops.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\"34 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-025-00438-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00438-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

随着转基因作物种植面积的不断扩大,对高效、全面的监测系统的需求日益迫切。为了建立一种适合于转基因油菜种植的大规模监测方法,在转基因油菜田周围的特定地点战略性地部署蜂箱,并采用TaqMan定量PCR (qPCR)方法对蜜蜂采集的油菜花粉中的转基因成分进行检测和分析。结果表明,CaMV35S启动子、Bar基因、NPTII基因和HPT基因在各蜂群花粉中的平均Ct值分别为27.91、29.58、31.49和31.97。4个基因在100 ~ 200 m花粉中的平均ΔCt值分别为- 0.35、1.66、2.58和5.06,显著低于300 ~ 1100 m花粉中的平均值(2.85、4.01、6.66和5.63)。本研究结果证明了利用蜜蜂采集的花粉进行转基因油菜植物大规模检测的可行性。这种基于蜜蜂授粉的转基因作物传播预警模型为监测和管理转基因作物提供了一种有效而实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for detecting transgenic rapeseed using pollen collected by Apis mellifera L.

With the continuous expansion of the planting area of genetically modified (GM) crops, the demand for efficient and comprehensive monitoring systems is becoming increasingly urgent. To establish a method suitable for large-scale monitoring of genetically modified rapeseed planting, beehives were strategically deployed at specific locations around genetically modified rapeseed fields, and the TaqMan quantitative PCR (qPCR) method was used to detect and analyze the genetically modified components in the rapeseed pollen collected by bees. The results demonstrated that the average Ct values for the CaMV35S promoter, Bar gene, NPTII gene, and HPT gene in the pollen of each hive were 27.91, 29.58, 31.49, and 31.97, respectively. The average ΔCt values for these four genes in hive pollen from 100 to 200 m were - 0.35, 1.66, 2.58, and 5.06, respectively, which were significantly lower than those from 300 to 1100 m (2.85, 4.01, 6.66, and 5.63). The results of this study have demonstrated the feasibility of using pollen collected by bees for large-scale detection of genetically modified rapeseed plants. This early warning model for GM crop spread based on bee pollination provides an efficient and practical solution for monitoring and managing genetically modified crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信