{"title":"新冠肺炎对儿童脑影响的多模态MRI分析。","authors":"Ting Peng, Chaowei Zhang, Pingping Xie, Ying Lin, Lin Zhang, Zuozhen Lan, Mingwen Yang, Xianghui Huang, Jungang Liu, Guoqiang Cheng","doi":"10.1038/s41598-025-96191-4","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has raised significant concerns regarding its impact on the central nervous system, including the brain. While the effects on adult populations are well documented, less is known about its implications for pediatric populations. This study investigates alterations in cortical metrics and structural covariance networks (SCNs) based on the Local Gyrification Index (LGI) in children with mild COVID-19, alongside changes in non-invasive MRI proxies related to glymphatic function. We enrolled 19 children with COVID-19 and 22 age-comparable healthy controls. High-resolution T1-weighted and diffusion-weighted MRI images were acquired. Cortical metrics, including thickness, surface area, volume, and LGI, were compared using vertex-wise general linear models. SCNs were analyzed for differences in global and nodal metrics, and MRI proxies, including diffusion tensor imaging along the perivascular space and choroid plexus (CP) volume, were also assessed. Our results showed increased cortical area, volume, and LGI in the left superior parietal cortex, as well as increased cortical thickness in the left lateral occipital cortex among children with COVID-19. SCN analysis revealed altered network topology and larger CP volumes in the COVID group, suggesting virus-induced neuroinflammation. These findings provide evidence of potential brain alterations in children following mild COVID-19, emphasizing the need for further investigation into long-term neurodevelopmental outcomes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11691"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972372/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal MRI analysis of COVID-19 effects on pediatric brain.\",\"authors\":\"Ting Peng, Chaowei Zhang, Pingping Xie, Ying Lin, Lin Zhang, Zuozhen Lan, Mingwen Yang, Xianghui Huang, Jungang Liu, Guoqiang Cheng\",\"doi\":\"10.1038/s41598-025-96191-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has raised significant concerns regarding its impact on the central nervous system, including the brain. While the effects on adult populations are well documented, less is known about its implications for pediatric populations. This study investigates alterations in cortical metrics and structural covariance networks (SCNs) based on the Local Gyrification Index (LGI) in children with mild COVID-19, alongside changes in non-invasive MRI proxies related to glymphatic function. We enrolled 19 children with COVID-19 and 22 age-comparable healthy controls. High-resolution T1-weighted and diffusion-weighted MRI images were acquired. Cortical metrics, including thickness, surface area, volume, and LGI, were compared using vertex-wise general linear models. SCNs were analyzed for differences in global and nodal metrics, and MRI proxies, including diffusion tensor imaging along the perivascular space and choroid plexus (CP) volume, were also assessed. Our results showed increased cortical area, volume, and LGI in the left superior parietal cortex, as well as increased cortical thickness in the left lateral occipital cortex among children with COVID-19. SCN analysis revealed altered network topology and larger CP volumes in the COVID group, suggesting virus-induced neuroinflammation. These findings provide evidence of potential brain alterations in children following mild COVID-19, emphasizing the need for further investigation into long-term neurodevelopmental outcomes.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11691\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-96191-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96191-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multimodal MRI analysis of COVID-19 effects on pediatric brain.
The COVID-19 pandemic has raised significant concerns regarding its impact on the central nervous system, including the brain. While the effects on adult populations are well documented, less is known about its implications for pediatric populations. This study investigates alterations in cortical metrics and structural covariance networks (SCNs) based on the Local Gyrification Index (LGI) in children with mild COVID-19, alongside changes in non-invasive MRI proxies related to glymphatic function. We enrolled 19 children with COVID-19 and 22 age-comparable healthy controls. High-resolution T1-weighted and diffusion-weighted MRI images were acquired. Cortical metrics, including thickness, surface area, volume, and LGI, were compared using vertex-wise general linear models. SCNs were analyzed for differences in global and nodal metrics, and MRI proxies, including diffusion tensor imaging along the perivascular space and choroid plexus (CP) volume, were also assessed. Our results showed increased cortical area, volume, and LGI in the left superior parietal cortex, as well as increased cortical thickness in the left lateral occipital cortex among children with COVID-19. SCN analysis revealed altered network topology and larger CP volumes in the COVID group, suggesting virus-induced neuroinflammation. These findings provide evidence of potential brain alterations in children following mild COVID-19, emphasizing the need for further investigation into long-term neurodevelopmental outcomes.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.