联苯诱导的人布鲁氏菌MAPB-9应激反应代谢组学分析

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Monika Sandhu, Atish T Paul, Prabhat N Jha
{"title":"联苯诱导的人布鲁氏菌MAPB-9应激反应代谢组学分析","authors":"Monika Sandhu, Atish T Paul, Prabhat N Jha","doi":"10.1038/s41598-025-95867-1","DOIUrl":null,"url":null,"abstract":"<p><p>The exposure of bacteria to toxic compounds such as polychlorinated biphenyl (PCB) and biphenyl induces an adaptive response at different levels of cell morphology, biochemistry, and physiology. PCB and biphenyl are highly toxic compounds commercially used in the industry. In our previous study, Brucella anthropi MAPB-9 efficiently degraded PCB-77 and biphenyl at a high concentration. In this study, we used metabolomic analyses to understand the metabolic processes occurring in MAPB-9 during exposure to biphenyl. A combination of analytical techniques such as GC-MS/MS and HR-MS study confirmed the complete biphenyl degradation pathway. The intermediate metabolic products identified were cis-2, 3-dihydro-2, 3-dihydroxy biphenyl, 2,3-dihydroxy biphenyl, and 4-dihydroxy-2-oxo-valerate. Further, benzoic acid and 2,3-dihydroxy benzoic acid metabolites identified in the extract revealed the interconnection of biphenyl and benzoic degradation pathways. In addition, the variations in the functioning of the major biochemical pathways in the cells were revealed through changes in the profile of metabolites belonging to glyoxylate, tricarboxylic acid (TCA) cycle, and fatty acid pathways. The exposure to biphenyl inhibited metabolic activity leading to changes in the morphology and metabolism. Despite many adverse changes, the MAPB-9 was able to adapt and grow in the toxic environment undergoing upper and lower biphenyl degradation pathways.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11713"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic profiling of biphenyl-induced stress response of Brucella anthropi MAPB-9.\",\"authors\":\"Monika Sandhu, Atish T Paul, Prabhat N Jha\",\"doi\":\"10.1038/s41598-025-95867-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exposure of bacteria to toxic compounds such as polychlorinated biphenyl (PCB) and biphenyl induces an adaptive response at different levels of cell morphology, biochemistry, and physiology. PCB and biphenyl are highly toxic compounds commercially used in the industry. In our previous study, Brucella anthropi MAPB-9 efficiently degraded PCB-77 and biphenyl at a high concentration. In this study, we used metabolomic analyses to understand the metabolic processes occurring in MAPB-9 during exposure to biphenyl. A combination of analytical techniques such as GC-MS/MS and HR-MS study confirmed the complete biphenyl degradation pathway. The intermediate metabolic products identified were cis-2, 3-dihydro-2, 3-dihydroxy biphenyl, 2,3-dihydroxy biphenyl, and 4-dihydroxy-2-oxo-valerate. Further, benzoic acid and 2,3-dihydroxy benzoic acid metabolites identified in the extract revealed the interconnection of biphenyl and benzoic degradation pathways. In addition, the variations in the functioning of the major biochemical pathways in the cells were revealed through changes in the profile of metabolites belonging to glyoxylate, tricarboxylic acid (TCA) cycle, and fatty acid pathways. The exposure to biphenyl inhibited metabolic activity leading to changes in the morphology and metabolism. Despite many adverse changes, the MAPB-9 was able to adapt and grow in the toxic environment undergoing upper and lower biphenyl degradation pathways.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11713\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95867-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95867-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细菌暴露于诸如多氯联苯(PCB)和联苯等有毒化合物中,可在不同水平的细胞形态、生物化学和生理上诱导适应性反应。多氯联苯和联苯是工业上使用的剧毒化合物。在我们之前的研究中,人布鲁氏菌MAPB-9在高浓度下可以高效降解PCB-77和联苯。在这项研究中,我们使用代谢组学分析来了解暴露于联苯时MAPB-9发生的代谢过程。GC-MS/MS和HR-MS等分析技术的结合研究证实了联苯的完整降解途径。鉴定的中间代谢产物为顺式2,3-二氢- 2,3-二羟基联苯、2,3-二羟基联苯和4-二羟基-2-氧-戊酸酯。此外,在提取物中鉴定出的苯甲酸和2,3-二羟基苯甲酸代谢物揭示了联苯和苯甲酸降解途径的相互联系。此外,细胞中主要生化途径功能的变化通过属于乙醛酸、三羧酸(TCA)循环和脂肪酸途径的代谢物谱的变化揭示。接触联苯抑制了代谢活动,导致形态和代谢的变化。尽管有许多不利的变化,MAPB-9能够在有毒环境中适应和生长,并经历上、下联苯降解途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabolomic profiling of biphenyl-induced stress response of Brucella anthropi MAPB-9.

Metabolomic profiling of biphenyl-induced stress response of Brucella anthropi MAPB-9.

Metabolomic profiling of biphenyl-induced stress response of Brucella anthropi MAPB-9.

Metabolomic profiling of biphenyl-induced stress response of Brucella anthropi MAPB-9.

The exposure of bacteria to toxic compounds such as polychlorinated biphenyl (PCB) and biphenyl induces an adaptive response at different levels of cell morphology, biochemistry, and physiology. PCB and biphenyl are highly toxic compounds commercially used in the industry. In our previous study, Brucella anthropi MAPB-9 efficiently degraded PCB-77 and biphenyl at a high concentration. In this study, we used metabolomic analyses to understand the metabolic processes occurring in MAPB-9 during exposure to biphenyl. A combination of analytical techniques such as GC-MS/MS and HR-MS study confirmed the complete biphenyl degradation pathway. The intermediate metabolic products identified were cis-2, 3-dihydro-2, 3-dihydroxy biphenyl, 2,3-dihydroxy biphenyl, and 4-dihydroxy-2-oxo-valerate. Further, benzoic acid and 2,3-dihydroxy benzoic acid metabolites identified in the extract revealed the interconnection of biphenyl and benzoic degradation pathways. In addition, the variations in the functioning of the major biochemical pathways in the cells were revealed through changes in the profile of metabolites belonging to glyoxylate, tricarboxylic acid (TCA) cycle, and fatty acid pathways. The exposure to biphenyl inhibited metabolic activity leading to changes in the morphology and metabolism. Despite many adverse changes, the MAPB-9 was able to adapt and grow in the toxic environment undergoing upper and lower biphenyl degradation pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信