{"title":"临床表型的机器学习有助于自闭症筛查和识别具有不同转录组谱的新亚群。","authors":"Wasana Yuwattana, Thanit Saeliw, Marlieke Lisanne van Erp, Chayanit Poolcharoen, Songphon Kanlayaprasit, Pon Trairatvorakul, Weerasak Chonchaiya, Valerie W Hu, Tewarit Sarachana","doi":"10.1038/s41598-025-95291-5","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) presents significant challenges in diagnosis and intervention due to its diverse clinical manifestations and underlying biological complexity. This study explored machine learning approaches to enhance ASD screening accuracy and identify meaningful subtypes using clinical assessments from AGRE database integrated with molecular data from GSE15402. Analysis of ADI-R scores from a large cohort of 2794 individuals demonstrated that deep learning models could achieve exceptional screening accuracy of 95.23% (CI 94.32-95.99%). Notably, comparable performance was maintained using a streamlined set of just 27 ADI-R sub-items, suggesting potential for more efficient diagnostic tools. Clustering analyses revealed three distinct subgroups identifiable through both clinical symptoms and gene expression patterns. When ASD were grouped based on clinical features, stronger associations emerged between symptoms and underlying molecular profiles compared to grouping based on gene expression alone. These findings suggest that starting with detailed clinical observations may be more effective for identifying biologically meaningful ASD subtypes than beginning with molecular data. This integrated approach combining clinical and molecular data through machine learning offers promising directions for developing more precise screening methods and personalized intervention strategies for individuals with ASD.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11712"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning of clinical phenotypes facilitates autism screening and identifies novel subgroups with distinct transcriptomic profiles.\",\"authors\":\"Wasana Yuwattana, Thanit Saeliw, Marlieke Lisanne van Erp, Chayanit Poolcharoen, Songphon Kanlayaprasit, Pon Trairatvorakul, Weerasak Chonchaiya, Valerie W Hu, Tewarit Sarachana\",\"doi\":\"10.1038/s41598-025-95291-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) presents significant challenges in diagnosis and intervention due to its diverse clinical manifestations and underlying biological complexity. This study explored machine learning approaches to enhance ASD screening accuracy and identify meaningful subtypes using clinical assessments from AGRE database integrated with molecular data from GSE15402. Analysis of ADI-R scores from a large cohort of 2794 individuals demonstrated that deep learning models could achieve exceptional screening accuracy of 95.23% (CI 94.32-95.99%). Notably, comparable performance was maintained using a streamlined set of just 27 ADI-R sub-items, suggesting potential for more efficient diagnostic tools. Clustering analyses revealed three distinct subgroups identifiable through both clinical symptoms and gene expression patterns. When ASD were grouped based on clinical features, stronger associations emerged between symptoms and underlying molecular profiles compared to grouping based on gene expression alone. These findings suggest that starting with detailed clinical observations may be more effective for identifying biologically meaningful ASD subtypes than beginning with molecular data. This integrated approach combining clinical and molecular data through machine learning offers promising directions for developing more precise screening methods and personalized intervention strategies for individuals with ASD.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11712\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95291-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95291-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Machine learning of clinical phenotypes facilitates autism screening and identifies novel subgroups with distinct transcriptomic profiles.
Autism spectrum disorder (ASD) presents significant challenges in diagnosis and intervention due to its diverse clinical manifestations and underlying biological complexity. This study explored machine learning approaches to enhance ASD screening accuracy and identify meaningful subtypes using clinical assessments from AGRE database integrated with molecular data from GSE15402. Analysis of ADI-R scores from a large cohort of 2794 individuals demonstrated that deep learning models could achieve exceptional screening accuracy of 95.23% (CI 94.32-95.99%). Notably, comparable performance was maintained using a streamlined set of just 27 ADI-R sub-items, suggesting potential for more efficient diagnostic tools. Clustering analyses revealed three distinct subgroups identifiable through both clinical symptoms and gene expression patterns. When ASD were grouped based on clinical features, stronger associations emerged between symptoms and underlying molecular profiles compared to grouping based on gene expression alone. These findings suggest that starting with detailed clinical observations may be more effective for identifying biologically meaningful ASD subtypes than beginning with molecular data. This integrated approach combining clinical and molecular data through machine learning offers promising directions for developing more precise screening methods and personalized intervention strategies for individuals with ASD.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.