Li Xiaoya, Zhu Junpeng, Xu Li, Zhang Haoyang, Fu Xueying, Wang Yu
{"title":"不同类型运动对绝经后妇女骨密度的影响:系统综述和网络荟萃分析。","authors":"Li Xiaoya, Zhu Junpeng, Xu Li, Zhang Haoyang, Fu Xueying, Wang Yu","doi":"10.1038/s41598-025-94510-3","DOIUrl":null,"url":null,"abstract":"<p><p>Postmenopausal women (PMW) experience the decline of ovarian function; estrogen reduction will accelerate bone mass loss. Exercise is an effective means of mitigating bone mineral density (BMD) loss in PMW, but the relative effectiveness of different exercise types remains under investigation. Our study encompassed a thorough assessment and network meta-analysis, following the principles specified in the Preferred Reporting Items for Systematic Reviews and Network Meta-analysis (PRISMA) statement. Data sources and searches Literature search databases include PubMed, Embase, Cochrane, Google Scholar, Web of Science (WOS), and Scopus. The data search combined keywords like bone mineral density (BMD), postmenopausal women, and various exercise types. Data synthesis and analysis Perform a network meta-analysis by integrating both direct and indirect comparisons using the R environment. This network meta-analysis aimed to evaluate and compare various exercise types with bone mineral density in PMW to identify the most effective types. The literature comprised a collective of 49 papers, encompassing 3360 people across eight interventions. The Network Meta-analysis ranked the effects of exercise interventions on lumbar spine BMD in descending order, based on the p-scores assigned to them in the forest plot. The exercise modalities that showed significant efficacy were AE + RT(Aerobic Mixed Resistance Exercise, MD = 32.35, 95% CrI [8.08;56.62], p = 0.87), AE(Aerobic Exercise, MD = 22.33, 95% CrI [6.67;37.99], p = 0.74), and RT(Resistance Training, MD = 16.98, 95% CrI [8.98;24.99], p = 0.60). Similarly, the femoral neck sites were ranked in descending order based on their p-scores in the forest plot, and the exercise patterns with significant effects on lumbar spine bone mineral density were AE + RT(MD = 140, 95% CrI [40.89;239.11], p = 0.99), WBV(Whole Body Vibration, MD = 26.07, 95% CrI [2.97;49.16], p = 0.80), and RT(MD = 16.98, 95% CrI [8.98;24.99], p = 0.72). Exercise intervention significantly and effectively alleviated BMD in postmenopausal women, with AE + RT having the best effect.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11740"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of different types of exercise on bone mineral density in postmenopausal women: a systematic review and network meta-analysis.\",\"authors\":\"Li Xiaoya, Zhu Junpeng, Xu Li, Zhang Haoyang, Fu Xueying, Wang Yu\",\"doi\":\"10.1038/s41598-025-94510-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postmenopausal women (PMW) experience the decline of ovarian function; estrogen reduction will accelerate bone mass loss. Exercise is an effective means of mitigating bone mineral density (BMD) loss in PMW, but the relative effectiveness of different exercise types remains under investigation. Our study encompassed a thorough assessment and network meta-analysis, following the principles specified in the Preferred Reporting Items for Systematic Reviews and Network Meta-analysis (PRISMA) statement. Data sources and searches Literature search databases include PubMed, Embase, Cochrane, Google Scholar, Web of Science (WOS), and Scopus. The data search combined keywords like bone mineral density (BMD), postmenopausal women, and various exercise types. Data synthesis and analysis Perform a network meta-analysis by integrating both direct and indirect comparisons using the R environment. This network meta-analysis aimed to evaluate and compare various exercise types with bone mineral density in PMW to identify the most effective types. The literature comprised a collective of 49 papers, encompassing 3360 people across eight interventions. The Network Meta-analysis ranked the effects of exercise interventions on lumbar spine BMD in descending order, based on the p-scores assigned to them in the forest plot. The exercise modalities that showed significant efficacy were AE + RT(Aerobic Mixed Resistance Exercise, MD = 32.35, 95% CrI [8.08;56.62], p = 0.87), AE(Aerobic Exercise, MD = 22.33, 95% CrI [6.67;37.99], p = 0.74), and RT(Resistance Training, MD = 16.98, 95% CrI [8.98;24.99], p = 0.60). Similarly, the femoral neck sites were ranked in descending order based on their p-scores in the forest plot, and the exercise patterns with significant effects on lumbar spine bone mineral density were AE + RT(MD = 140, 95% CrI [40.89;239.11], p = 0.99), WBV(Whole Body Vibration, MD = 26.07, 95% CrI [2.97;49.16], p = 0.80), and RT(MD = 16.98, 95% CrI [8.98;24.99], p = 0.72). Exercise intervention significantly and effectively alleviated BMD in postmenopausal women, with AE + RT having the best effect.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11740\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94510-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94510-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
绝经后妇女(PMW)经历卵巢功能下降;雌激素减少会加速骨质流失。运动是减轻PMW骨密度(BMD)损失的有效手段,但不同运动类型的相对有效性仍在研究中。我们的研究包括全面的评估和网络荟萃分析,遵循系统评价和网络荟萃分析(PRISMA)声明中规定的原则。文献检索数据库包括PubMed、Embase、Cochrane、b谷歌Scholar、Web of Science (WOS)、Scopus等。数据搜索结合了骨矿物质密度(BMD)、绝经后妇女和各种运动类型等关键词。数据综合和分析通过使用R环境集成直接和间接比较来执行网络元分析。本网络荟萃分析旨在评估和比较不同运动类型与PMW骨密度的关系,以确定最有效的运动类型。文献包括49篇论文,涉及8项干预措施的3360人。网络荟萃分析将运动干预对腰椎骨密度的影响按降序排序,基于森林图中分配给它们的p值。运动方式有AE + RT(有氧混合阻力运动,MD = 32.35, 95% CrI [8.08;56.62], p = 0.87)、AE(有氧运动,MD = 22.33, 95% CrI [6.67;37.99], p = 0.74)、RT(阻力训练,MD = 16.98, 95% CrI [8.98;24.99], p = 0.60)。同样,在森林图中,股骨颈部位的p值由高到低依次排列,对腰椎骨密度有显著影响的运动模式为AE + RT(MD = 140, 95% CrI [40.89;239.11], p = 0.99)、WBV(全身振动,MD = 26.07, 95% CrI [2.97;49.16], p = 0.80)和RT(MD = 16.98, 95% CrI [8.98;24.99], p = 0.72)。运动干预能显著有效地缓解绝经后妇女的骨密度,其中AE + RT效果最好。
Effect of different types of exercise on bone mineral density in postmenopausal women: a systematic review and network meta-analysis.
Postmenopausal women (PMW) experience the decline of ovarian function; estrogen reduction will accelerate bone mass loss. Exercise is an effective means of mitigating bone mineral density (BMD) loss in PMW, but the relative effectiveness of different exercise types remains under investigation. Our study encompassed a thorough assessment and network meta-analysis, following the principles specified in the Preferred Reporting Items for Systematic Reviews and Network Meta-analysis (PRISMA) statement. Data sources and searches Literature search databases include PubMed, Embase, Cochrane, Google Scholar, Web of Science (WOS), and Scopus. The data search combined keywords like bone mineral density (BMD), postmenopausal women, and various exercise types. Data synthesis and analysis Perform a network meta-analysis by integrating both direct and indirect comparisons using the R environment. This network meta-analysis aimed to evaluate and compare various exercise types with bone mineral density in PMW to identify the most effective types. The literature comprised a collective of 49 papers, encompassing 3360 people across eight interventions. The Network Meta-analysis ranked the effects of exercise interventions on lumbar spine BMD in descending order, based on the p-scores assigned to them in the forest plot. The exercise modalities that showed significant efficacy were AE + RT(Aerobic Mixed Resistance Exercise, MD = 32.35, 95% CrI [8.08;56.62], p = 0.87), AE(Aerobic Exercise, MD = 22.33, 95% CrI [6.67;37.99], p = 0.74), and RT(Resistance Training, MD = 16.98, 95% CrI [8.98;24.99], p = 0.60). Similarly, the femoral neck sites were ranked in descending order based on their p-scores in the forest plot, and the exercise patterns with significant effects on lumbar spine bone mineral density were AE + RT(MD = 140, 95% CrI [40.89;239.11], p = 0.99), WBV(Whole Body Vibration, MD = 26.07, 95% CrI [2.97;49.16], p = 0.80), and RT(MD = 16.98, 95% CrI [8.98;24.99], p = 0.72). Exercise intervention significantly and effectively alleviated BMD in postmenopausal women, with AE + RT having the best effect.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.