单细胞克隆分离人五毛单胞菌技术的建立:在猪养殖业中诊断滴虫感染的一个有前途的工具。

IF 3 2区 医学 Q1 PARASITOLOGY
Yibin Zhu, Haiming Cai, Shenquan Liao, Juan Li, Siyun Fang, Hanqin Shen, Dingai Wang, Zhuanqiang Yan, Minna Lv, Xuhui Lin, Junjing Hu, Yongle Song, Xiangjie Chen, Lijun Yin, Jianfei Zhang, Nanshan Qi, Mingfei Sun
{"title":"单细胞克隆分离人五毛单胞菌技术的建立:在猪养殖业中诊断滴虫感染的一个有前途的工具。","authors":"Yibin Zhu, Haiming Cai, Shenquan Liao, Juan Li, Siyun Fang, Hanqin Shen, Dingai Wang, Zhuanqiang Yan, Minna Lv, Xuhui Lin, Junjing Hu, Yongle Song, Xiangjie Chen, Lijun Yin, Jianfei Zhang, Nanshan Qi, Mingfei Sun","doi":"10.1186/s13071-025-06752-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pig breeding is a crucial sector of the global economy, playing a significant role in meat production. However, the prevalence of Trichomonas spp., a group of parasites known to induce diarrhea in various hosts, presents significant challenges in breeding facilities. These parasites pose a substantial threat to the pig breeding industry. Furthermore, despite its prevalence, diagnosing Trichomonas spp. is often challenging, primarily owing to the presence of mixed infections involving different species within clinical samples. To address this concern, we developed a novel isolation method that combines a single-cell isolation culture technique with an antimicrobial drug susceptibility test.</p><p><strong>Methods: </strong>Trichomonas was isolated and cultured by using the established single-worm separation technology combined with antibacterial drug screening method, and it was identified as Pentatrichomonas hominis by molecular biological identification and morphological identification. The in vitro culture conditions of the isolate were optimized to establish a stable in vitro culture system.</p><p><strong>Results: </strong>The method developed in this study was effective in successfully isolating a pure species of trichomonad from fecal samples obtained from weaned piglets in Guangdong Province. By optimizing important variables such as the culture medium, serum type, and inoculum quantity, we established a stable in vitro culture system utilizing a modified Diamond medium supplemented with 10% Procell fetal bovine serum without the use of antibiotics. Subsequent analysis of the isolate's 18S rRNA gene, ITS1-5.8S rRNA-ITS2 gene, and EF-α gene, through polymerase chain reaction, DNA sequencing, and phylogenetic analysis, revealed its close association to Pentatrichomonas hominis. Light microscopy and scanning electron microscopy demonstrated the presence of various distinct cellular structures, including four anterior flagella, recurrent flagellum, undulating membrane, pelta and axostyle. Additionally, transmission electron microscopy revealed the existence of organelles such as the Golgi complex, rough endoplasmic reticulum, food vacuoles, and hydrogenosomes. This study represents the first successful isolation of monoclonal cells of P. hominis to our knowledge and serves as a valuable baseline for future research focused on the isolation and purification of various other parasites. Additionally, it offers practical guidance for the diagnosis and management of Trichomonas spp. infections in pigs.</p><p><strong>Conclusions: </strong>In summary, our findings underscore the efficacy of our novel isolation technique as a valuable tool for the diagnosis and management of Trichomonas spp. infections, which can help mitigate the significant economic losses encountered in the pig breeding industry.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"133"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971829/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a single-cell cloning technique for isolation of Pentatrichomonas hominis: a promising tool for diagnosing Trichomonas spp. infections in the pig breeding industry.\",\"authors\":\"Yibin Zhu, Haiming Cai, Shenquan Liao, Juan Li, Siyun Fang, Hanqin Shen, Dingai Wang, Zhuanqiang Yan, Minna Lv, Xuhui Lin, Junjing Hu, Yongle Song, Xiangjie Chen, Lijun Yin, Jianfei Zhang, Nanshan Qi, Mingfei Sun\",\"doi\":\"10.1186/s13071-025-06752-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pig breeding is a crucial sector of the global economy, playing a significant role in meat production. However, the prevalence of Trichomonas spp., a group of parasites known to induce diarrhea in various hosts, presents significant challenges in breeding facilities. These parasites pose a substantial threat to the pig breeding industry. Furthermore, despite its prevalence, diagnosing Trichomonas spp. is often challenging, primarily owing to the presence of mixed infections involving different species within clinical samples. To address this concern, we developed a novel isolation method that combines a single-cell isolation culture technique with an antimicrobial drug susceptibility test.</p><p><strong>Methods: </strong>Trichomonas was isolated and cultured by using the established single-worm separation technology combined with antibacterial drug screening method, and it was identified as Pentatrichomonas hominis by molecular biological identification and morphological identification. The in vitro culture conditions of the isolate were optimized to establish a stable in vitro culture system.</p><p><strong>Results: </strong>The method developed in this study was effective in successfully isolating a pure species of trichomonad from fecal samples obtained from weaned piglets in Guangdong Province. By optimizing important variables such as the culture medium, serum type, and inoculum quantity, we established a stable in vitro culture system utilizing a modified Diamond medium supplemented with 10% Procell fetal bovine serum without the use of antibiotics. Subsequent analysis of the isolate's 18S rRNA gene, ITS1-5.8S rRNA-ITS2 gene, and EF-α gene, through polymerase chain reaction, DNA sequencing, and phylogenetic analysis, revealed its close association to Pentatrichomonas hominis. Light microscopy and scanning electron microscopy demonstrated the presence of various distinct cellular structures, including four anterior flagella, recurrent flagellum, undulating membrane, pelta and axostyle. Additionally, transmission electron microscopy revealed the existence of organelles such as the Golgi complex, rough endoplasmic reticulum, food vacuoles, and hydrogenosomes. This study represents the first successful isolation of monoclonal cells of P. hominis to our knowledge and serves as a valuable baseline for future research focused on the isolation and purification of various other parasites. Additionally, it offers practical guidance for the diagnosis and management of Trichomonas spp. infections in pigs.</p><p><strong>Conclusions: </strong>In summary, our findings underscore the efficacy of our novel isolation technique as a valuable tool for the diagnosis and management of Trichomonas spp. infections, which can help mitigate the significant economic losses encountered in the pig breeding industry.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"133\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-06752-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06752-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:生猪养殖是全球经济的一个重要部门,在肉类生产中发挥着重要作用。然而,毛滴虫是一种已知可在各种宿主中引起腹泻的寄生虫,其流行对育种设施提出了重大挑战。这些寄生虫对养猪业构成了重大威胁。此外,尽管滴虫病很流行,但诊断滴虫病往往具有挑战性,主要是由于临床样本中存在涉及不同物种的混合感染。为了解决这一问题,我们开发了一种新的分离方法,将单细胞分离培养技术与抗菌药物敏感性试验相结合。方法:采用已建立的单虫分离技术结合抗菌药物筛选方法分离培养毛滴虫,经分子生物学鉴定和形态鉴定鉴定为人五毛滴虫。对分离物的体外培养条件进行优化,建立稳定的体外培养体系。结果:本方法能有效地从广东省断奶仔猪粪便中分离出一种纯毛滴虫。通过优化培养基、血清类型和接种量等重要变量,在不使用抗生素的情况下,在改良的Diamond培养基中添加10% Procell胎牛血清,建立了稳定的体外培养体系。随后,通过聚合酶链反应、DNA测序和系统发育分析,对该分离物的18S rRNA基因、ITS1-5.8S rRNA- its2基因和EF-α基因进行分析,发现该分离物与人人五毛单胞菌关系密切。光镜和扫描电镜显示有多种不同的细胞结构,包括四个前鞭毛,再鞭毛,波状膜,骨盆和轴柱。此外,透射电镜还发现了高尔基复合体、粗内质网、食物液泡和氢化酶体等细胞器的存在。据我们所知,本研究首次成功分离出人源疟原虫单克隆细胞,为今后进一步分离纯化其他寄生虫奠定了基础。此外,对猪毛滴虫感染的诊断和处理具有实际指导意义。结论:总之,我们的研究结果强调了我们的新分离技术作为滴虫感染诊断和管理的有价值的工具的有效性,这可以帮助减轻养猪业遇到的重大经济损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a single-cell cloning technique for isolation of Pentatrichomonas hominis: a promising tool for diagnosing Trichomonas spp. infections in the pig breeding industry.

Background: Pig breeding is a crucial sector of the global economy, playing a significant role in meat production. However, the prevalence of Trichomonas spp., a group of parasites known to induce diarrhea in various hosts, presents significant challenges in breeding facilities. These parasites pose a substantial threat to the pig breeding industry. Furthermore, despite its prevalence, diagnosing Trichomonas spp. is often challenging, primarily owing to the presence of mixed infections involving different species within clinical samples. To address this concern, we developed a novel isolation method that combines a single-cell isolation culture technique with an antimicrobial drug susceptibility test.

Methods: Trichomonas was isolated and cultured by using the established single-worm separation technology combined with antibacterial drug screening method, and it was identified as Pentatrichomonas hominis by molecular biological identification and morphological identification. The in vitro culture conditions of the isolate were optimized to establish a stable in vitro culture system.

Results: The method developed in this study was effective in successfully isolating a pure species of trichomonad from fecal samples obtained from weaned piglets in Guangdong Province. By optimizing important variables such as the culture medium, serum type, and inoculum quantity, we established a stable in vitro culture system utilizing a modified Diamond medium supplemented with 10% Procell fetal bovine serum without the use of antibiotics. Subsequent analysis of the isolate's 18S rRNA gene, ITS1-5.8S rRNA-ITS2 gene, and EF-α gene, through polymerase chain reaction, DNA sequencing, and phylogenetic analysis, revealed its close association to Pentatrichomonas hominis. Light microscopy and scanning electron microscopy demonstrated the presence of various distinct cellular structures, including four anterior flagella, recurrent flagellum, undulating membrane, pelta and axostyle. Additionally, transmission electron microscopy revealed the existence of organelles such as the Golgi complex, rough endoplasmic reticulum, food vacuoles, and hydrogenosomes. This study represents the first successful isolation of monoclonal cells of P. hominis to our knowledge and serves as a valuable baseline for future research focused on the isolation and purification of various other parasites. Additionally, it offers practical guidance for the diagnosis and management of Trichomonas spp. infections in pigs.

Conclusions: In summary, our findings underscore the efficacy of our novel isolation technique as a valuable tool for the diagnosis and management of Trichomonas spp. infections, which can help mitigate the significant economic losses encountered in the pig breeding industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信