嗜中性粒细胞的铁下垂。

IF 3.6 3区 医学 Q3 CELL BIOLOGY
Yu-Bin Lee, Hyeong-Wook Shin, Sanjeeb Shrestha, Jun-Kyu Kim, Soo-Jung Jung, Min-Sang Shin, Chang-Won Hong
{"title":"嗜中性粒细胞的铁下垂。","authors":"Yu-Bin Lee, Hyeong-Wook Shin, Sanjeeb Shrestha, Jun-Kyu Kim, Soo-Jung Jung, Min-Sang Shin, Chang-Won Hong","doi":"10.1093/jleuko/qiaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation. The ferroptosis mechanism involves complex interactions between fatty acid metabolism, iron metabolism, lipid peroxidation, and antioxidative defense mechanisms. Fatty acids, especially polyunsaturated fatty acids, are susceptible to peroxidation, leading to the formation of lipid peroxides. Iron metabolism plays a critical role, as excessive free iron catalyzes the production of reactive oxygen species via the Fenton reaction, further promoting lipid peroxidation. Antioxidative mechanisms, including glutathione peroxidase 4 and other components of the glutathione system, are crucial for neutralizing lipid peroxides and preventing ferroptosis. Recent studies have highlighted the role of ferroptosis in neutrophils, particularly under pathological conditions. Neutrophils, due to their high iron content and abundance of polyunsaturated fatty acids, are inherently predisposed to ferroptosis. Recent studies indicate that polymorphonuclear myeloid-derived suppressor cells and tumor-infiltrating neutrophils exhibit high susceptibility to ferroptosis due to a dysregulated antioxidant defense mechanism through hypoxia-mediated downregulation of glutathione peroxidase 4. Conversely, tumor-infiltrating neutrophils resist ferroptosis through nuclear factor erythroid 2-related factor 2-dependent antioxidant pathway. Moreover, neutrophils induce ferroptosis in various cell types, such as endothelial cells, smooth muscle cells, and cardiomyocytes, through the release of neutrophil extracellular traps. This neutrophil extracellular trap-mediated ferroptosis contributes to the pathogenesis of conditions such as intestinal ischemia-reperfusion injury, aortic aneurysm, acute lung injury, and doxorubicin-induced cardiotoxicity. This review consolidates current knowledge on the mechanisms of ferroptosis in neutrophils and its implications in disease progression and immune regulation. Understanding these processes may provide new therapeutic targets for modulating immune responses and improving outcomes in ferroptosis-related diseases.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis in neutrophils.\",\"authors\":\"Yu-Bin Lee, Hyeong-Wook Shin, Sanjeeb Shrestha, Jun-Kyu Kim, Soo-Jung Jung, Min-Sang Shin, Chang-Won Hong\",\"doi\":\"10.1093/jleuko/qiaf039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation. The ferroptosis mechanism involves complex interactions between fatty acid metabolism, iron metabolism, lipid peroxidation, and antioxidative defense mechanisms. Fatty acids, especially polyunsaturated fatty acids, are susceptible to peroxidation, leading to the formation of lipid peroxides. Iron metabolism plays a critical role, as excessive free iron catalyzes the production of reactive oxygen species via the Fenton reaction, further promoting lipid peroxidation. Antioxidative mechanisms, including glutathione peroxidase 4 and other components of the glutathione system, are crucial for neutralizing lipid peroxides and preventing ferroptosis. Recent studies have highlighted the role of ferroptosis in neutrophils, particularly under pathological conditions. Neutrophils, due to their high iron content and abundance of polyunsaturated fatty acids, are inherently predisposed to ferroptosis. Recent studies indicate that polymorphonuclear myeloid-derived suppressor cells and tumor-infiltrating neutrophils exhibit high susceptibility to ferroptosis due to a dysregulated antioxidant defense mechanism through hypoxia-mediated downregulation of glutathione peroxidase 4. Conversely, tumor-infiltrating neutrophils resist ferroptosis through nuclear factor erythroid 2-related factor 2-dependent antioxidant pathway. Moreover, neutrophils induce ferroptosis in various cell types, such as endothelial cells, smooth muscle cells, and cardiomyocytes, through the release of neutrophil extracellular traps. This neutrophil extracellular trap-mediated ferroptosis contributes to the pathogenesis of conditions such as intestinal ischemia-reperfusion injury, aortic aneurysm, acute lung injury, and doxorubicin-induced cardiotoxicity. This review consolidates current knowledge on the mechanisms of ferroptosis in neutrophils and its implications in disease progression and immune regulation. Understanding these processes may provide new therapeutic targets for modulating immune responses and improving outcomes in ferroptosis-related diseases.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiaf039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁下垂是一种以铁依赖性脂质过氧化为特征的调节细胞死亡的独特形式。铁下垂机制涉及脂肪酸代谢、铁代谢、脂质过氧化和抗氧化防御机制之间复杂的相互作用。脂肪酸,尤其是多不饱和脂肪酸(PUFAs)容易发生过氧化,导致脂质过氧化物的形成。铁代谢起着至关重要的作用,过量的游离铁通过芬顿反应催化活性氧(ROS)的产生,进一步促进脂质过氧化。抗氧化机制,包括谷胱甘肽过氧化物酶4 (GPX4)和谷胱甘肽系统的其他成分,对于中和脂质过氧化物和防止铁死亡至关重要。最近的研究强调了铁下垂在中性粒细胞中的作用,特别是在病理条件下。中性粒细胞,由于其高铁含量和丰富的pufa,天生倾向于铁下垂。最近的研究表明,多态核髓源性抑制细胞(PMN-MDSCs)和肿瘤浸润中性粒细胞(TINs)由于缺氧介导的GPX4下调而导致抗氧化防御机制失调,对铁死亡具有高度易感。相反,tin通过核因子红细胞2相关因子2 (Nrf2)依赖的抗氧化途径抵抗铁下垂。此外,中性粒细胞通过释放中性粒细胞胞外陷阱(NETs),诱导各种细胞类型的铁下垂,如内皮细胞、平滑肌细胞和心肌细胞。这种net介导的铁下垂有助于肠缺血再灌注损伤、主动脉瘤、急性肺损伤和阿霉素诱导的心脏毒性等疾病的发病机制。这篇综述巩固了目前关于中性粒细胞铁凋亡的机制及其在疾病进展和免疫调节中的意义的知识。了解这些过程可能为调节免疫反应和改善铁中毒相关疾病的预后提供新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferroptosis in neutrophils.

Ferroptosis is a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation. The ferroptosis mechanism involves complex interactions between fatty acid metabolism, iron metabolism, lipid peroxidation, and antioxidative defense mechanisms. Fatty acids, especially polyunsaturated fatty acids, are susceptible to peroxidation, leading to the formation of lipid peroxides. Iron metabolism plays a critical role, as excessive free iron catalyzes the production of reactive oxygen species via the Fenton reaction, further promoting lipid peroxidation. Antioxidative mechanisms, including glutathione peroxidase 4 and other components of the glutathione system, are crucial for neutralizing lipid peroxides and preventing ferroptosis. Recent studies have highlighted the role of ferroptosis in neutrophils, particularly under pathological conditions. Neutrophils, due to their high iron content and abundance of polyunsaturated fatty acids, are inherently predisposed to ferroptosis. Recent studies indicate that polymorphonuclear myeloid-derived suppressor cells and tumor-infiltrating neutrophils exhibit high susceptibility to ferroptosis due to a dysregulated antioxidant defense mechanism through hypoxia-mediated downregulation of glutathione peroxidase 4. Conversely, tumor-infiltrating neutrophils resist ferroptosis through nuclear factor erythroid 2-related factor 2-dependent antioxidant pathway. Moreover, neutrophils induce ferroptosis in various cell types, such as endothelial cells, smooth muscle cells, and cardiomyocytes, through the release of neutrophil extracellular traps. This neutrophil extracellular trap-mediated ferroptosis contributes to the pathogenesis of conditions such as intestinal ischemia-reperfusion injury, aortic aneurysm, acute lung injury, and doxorubicin-induced cardiotoxicity. This review consolidates current knowledge on the mechanisms of ferroptosis in neutrophils and its implications in disease progression and immune regulation. Understanding these processes may provide new therapeutic targets for modulating immune responses and improving outcomes in ferroptosis-related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Leukocyte Biology
Journal of Leukocyte Biology 医学-免疫学
CiteScore
11.50
自引率
0.00%
发文量
358
审稿时长
2 months
期刊介绍: JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信