Suqin Zhu, Zhiqing Huang, Xiaojing Chen, Wenwen Jiang, Yuan Zhou, Beihong Zheng, Yan Sun
{"title":"基于机器学习的多囊卵巢综合征IVF/ICSI患者新鲜胚胎移植后活产预测模型的构建与评价","authors":"Suqin Zhu, Zhiqing Huang, Xiaojing Chen, Wenwen Jiang, Yuan Zhou, Beihong Zheng, Yan Sun","doi":"10.1186/s13048-025-01654-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the determinants affecting live birth outcomes in fresh embryo transfer among polycystic ovary syndrome (PCOS) patients using various machine learning (ML) algorithms and to construct predictive models, offering novel insights for enhancing live birth rates in this specific group.</p><p><strong>Methods: </strong>A sum of 1,062 fresh embryo transfer cycles involving PCOS patients were analyzed, with 466 resulting in live births. The dataset was split randomly into training and testing subsets at a 7:3 ratio. Least absolute shrinkage and selection operator and recursive feature elimination methods were utilized for feature selection within the training data. A grid search strategy identified the optimal parameters for seven ML models: decision tree (DT), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), naive Bayes model(NBM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost). The evaluation of model effectiveness incorporated diverse metrics, encompassing area under the curve (AUC), accuracy, positive predictive value, negative predictive value, F1 score, and Brier score. Calibration curves and decision curve analysis were employed to ascertain the optimal model. Furthermore, Shapley additive explanations were applied to elucidate the importance of predictor variables in the top-performing model.</p><p><strong>Results: </strong>The AUC values of DT, KNN, LightGBM, NBM, RF, SVM and XGBoost models in the training set were 0.813, 1.000, 0.724, 0.791, 1.000, 0.819 and 0.853, respectively. Corresponding values in the testing set were 0.773, 0.719, 0.705, 0.764, 0.794, 0.806 and 0.822. XGBoost emerged as the most effective ML model. SHAP analysis revealed that variables encompassing embryo transfer count, embryo type, maternal age, infertility duration, body mass index, serum testosterone (T) levels, and progesterone (P) levels on the day of human chorionic gonadotropin administration were pivotal predictors of live birth outcomes in individuals with PCOS receiving fresh embryo transfer.</p><p><strong>Conclusion: </strong>This study developed a live birth prediction model tailored for PCOS fresh embryo transfer cycles, leveraging ML algorithms to compare the efficacy of multiple models. The XGBoost model demonstrated superior predictive capacity, enabling prompt and precise identification of critical risk factors influencing live birth outcomes in PCOS patients. These findings offer actionable insights for clinical intervention, guiding strategies to improve pregnancy outcomes in this population.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"70"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction and evaluation of machine learning-based prediction model for live birth following fresh embryo transfer in IVF/ICSI patients with polycystic ovary syndrome.\",\"authors\":\"Suqin Zhu, Zhiqing Huang, Xiaojing Chen, Wenwen Jiang, Yuan Zhou, Beihong Zheng, Yan Sun\",\"doi\":\"10.1186/s13048-025-01654-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the determinants affecting live birth outcomes in fresh embryo transfer among polycystic ovary syndrome (PCOS) patients using various machine learning (ML) algorithms and to construct predictive models, offering novel insights for enhancing live birth rates in this specific group.</p><p><strong>Methods: </strong>A sum of 1,062 fresh embryo transfer cycles involving PCOS patients were analyzed, with 466 resulting in live births. The dataset was split randomly into training and testing subsets at a 7:3 ratio. Least absolute shrinkage and selection operator and recursive feature elimination methods were utilized for feature selection within the training data. A grid search strategy identified the optimal parameters for seven ML models: decision tree (DT), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), naive Bayes model(NBM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost). The evaluation of model effectiveness incorporated diverse metrics, encompassing area under the curve (AUC), accuracy, positive predictive value, negative predictive value, F1 score, and Brier score. Calibration curves and decision curve analysis were employed to ascertain the optimal model. Furthermore, Shapley additive explanations were applied to elucidate the importance of predictor variables in the top-performing model.</p><p><strong>Results: </strong>The AUC values of DT, KNN, LightGBM, NBM, RF, SVM and XGBoost models in the training set were 0.813, 1.000, 0.724, 0.791, 1.000, 0.819 and 0.853, respectively. Corresponding values in the testing set were 0.773, 0.719, 0.705, 0.764, 0.794, 0.806 and 0.822. XGBoost emerged as the most effective ML model. SHAP analysis revealed that variables encompassing embryo transfer count, embryo type, maternal age, infertility duration, body mass index, serum testosterone (T) levels, and progesterone (P) levels on the day of human chorionic gonadotropin administration were pivotal predictors of live birth outcomes in individuals with PCOS receiving fresh embryo transfer.</p><p><strong>Conclusion: </strong>This study developed a live birth prediction model tailored for PCOS fresh embryo transfer cycles, leveraging ML algorithms to compare the efficacy of multiple models. The XGBoost model demonstrated superior predictive capacity, enabling prompt and precise identification of critical risk factors influencing live birth outcomes in PCOS patients. These findings offer actionable insights for clinical intervention, guiding strategies to improve pregnancy outcomes in this population.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":\"18 1\",\"pages\":\"70\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-025-01654-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01654-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Construction and evaluation of machine learning-based prediction model for live birth following fresh embryo transfer in IVF/ICSI patients with polycystic ovary syndrome.
Objective: To investigate the determinants affecting live birth outcomes in fresh embryo transfer among polycystic ovary syndrome (PCOS) patients using various machine learning (ML) algorithms and to construct predictive models, offering novel insights for enhancing live birth rates in this specific group.
Methods: A sum of 1,062 fresh embryo transfer cycles involving PCOS patients were analyzed, with 466 resulting in live births. The dataset was split randomly into training and testing subsets at a 7:3 ratio. Least absolute shrinkage and selection operator and recursive feature elimination methods were utilized for feature selection within the training data. A grid search strategy identified the optimal parameters for seven ML models: decision tree (DT), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), naive Bayes model(NBM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost). The evaluation of model effectiveness incorporated diverse metrics, encompassing area under the curve (AUC), accuracy, positive predictive value, negative predictive value, F1 score, and Brier score. Calibration curves and decision curve analysis were employed to ascertain the optimal model. Furthermore, Shapley additive explanations were applied to elucidate the importance of predictor variables in the top-performing model.
Results: The AUC values of DT, KNN, LightGBM, NBM, RF, SVM and XGBoost models in the training set were 0.813, 1.000, 0.724, 0.791, 1.000, 0.819 and 0.853, respectively. Corresponding values in the testing set were 0.773, 0.719, 0.705, 0.764, 0.794, 0.806 and 0.822. XGBoost emerged as the most effective ML model. SHAP analysis revealed that variables encompassing embryo transfer count, embryo type, maternal age, infertility duration, body mass index, serum testosterone (T) levels, and progesterone (P) levels on the day of human chorionic gonadotropin administration were pivotal predictors of live birth outcomes in individuals with PCOS receiving fresh embryo transfer.
Conclusion: This study developed a live birth prediction model tailored for PCOS fresh embryo transfer cycles, leveraging ML algorithms to compare the efficacy of multiple models. The XGBoost model demonstrated superior predictive capacity, enabling prompt and precise identification of critical risk factors influencing live birth outcomes in PCOS patients. These findings offer actionable insights for clinical intervention, guiding strategies to improve pregnancy outcomes in this population.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.