Sarifah Aini, Rina, Sinar Pagi Sektiana, Soo Rin Lee, Ah Ran Kim, Hye-Eun Kang, Muhammad Hilman Fu'adil Amin, Won-Kyo Jung, Angkasa Putra, I Nyoman Suyasa, Shantanu Kundu, Hyun-Woo Kim
{"title":"Mitogenomic Characterization and Phylogenetic Insights of the Ornamental Sail-Fin Molly (Poecilia velifera) in Non-Native Indonesian Waters.","authors":"Sarifah Aini, Rina, Sinar Pagi Sektiana, Soo Rin Lee, Ah Ran Kim, Hye-Eun Kang, Muhammad Hilman Fu'adil Amin, Won-Kyo Jung, Angkasa Putra, I Nyoman Suyasa, Shantanu Kundu, Hyun-Woo Kim","doi":"10.1007/s10528-025-11093-4","DOIUrl":null,"url":null,"abstract":"<p><p>The ornamental fish Poecilia velifera (Sail-fin molly, Poeciliidae) has spread widely to various non-native ecosystems around the world, far from its native habitat in the Yucatan Peninsula, Mexico. Despite the availability of some partial mitochondrial and nuclear genetic information, the complete mitogenomic structure and its variation remain unknown for this species, which is essential for a comprehensive genetic characterization and detailed phylogenetic investigation. This study applied next-generation sequencing to generate the de novo mitogenome of morphologically identified P. velifera from a non-native brackish water ecosystem in Banten Province, Indonesia. The resulting mitogenome was 16,627 bp in length and encompassed 13 protein-coding genes (PCGs), 22 transfer RNAs, two ribosomal RNAs, and a non-coding control region (CR). The result enhances our understanding of the genetic makeup of P. velifera compared to its congeners. Furthermore, the identified nucleotide variations within the conserved blocks of the CR region could provide insights into the functional role of this non-coding region. Bayesian phylogenetic inference using concatenated PCGs distinguished P. velifera from its congeners and showed monophyletic clustering of Poecilia in the family Poeciliidae, consistent with earlier evolutionary hypotheses. This first mitogenome of P. velifera paves the way for using multiple mitochondrial markers in species identification and understanding population structure in the near future. In addition, looking into the genetic evidence of this ornamental species in a non-native ecosystem, the study emphasizes the importance of strict quarantine regulations to protect Indonesia's native fish species.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11093-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitogenomic Characterization and Phylogenetic Insights of the Ornamental Sail-Fin Molly (Poecilia velifera) in Non-Native Indonesian Waters.
The ornamental fish Poecilia velifera (Sail-fin molly, Poeciliidae) has spread widely to various non-native ecosystems around the world, far from its native habitat in the Yucatan Peninsula, Mexico. Despite the availability of some partial mitochondrial and nuclear genetic information, the complete mitogenomic structure and its variation remain unknown for this species, which is essential for a comprehensive genetic characterization and detailed phylogenetic investigation. This study applied next-generation sequencing to generate the de novo mitogenome of morphologically identified P. velifera from a non-native brackish water ecosystem in Banten Province, Indonesia. The resulting mitogenome was 16,627 bp in length and encompassed 13 protein-coding genes (PCGs), 22 transfer RNAs, two ribosomal RNAs, and a non-coding control region (CR). The result enhances our understanding of the genetic makeup of P. velifera compared to its congeners. Furthermore, the identified nucleotide variations within the conserved blocks of the CR region could provide insights into the functional role of this non-coding region. Bayesian phylogenetic inference using concatenated PCGs distinguished P. velifera from its congeners and showed monophyletic clustering of Poecilia in the family Poeciliidae, consistent with earlier evolutionary hypotheses. This first mitogenome of P. velifera paves the way for using multiple mitochondrial markers in species identification and understanding population structure in the near future. In addition, looking into the genetic evidence of this ornamental species in a non-native ecosystem, the study emphasizes the importance of strict quarantine regulations to protect Indonesia's native fish species.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.