{"title":"通过细胞透镜加速对生物传感器的理解:该领域的现状、新兴方向、进展和挑战。","authors":"Jasjeet Narang, Niket Rana, Arjun Chauhan, Anushka Kumari, Vanshika Minhas","doi":"10.1007/s12010-025-05209-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the Understanding of Biosensors Through the Lens of Cells: State of the Field, Emerging Directions, Advances, and Challenges.\",\"authors\":\"Jasjeet Narang, Niket Rana, Arjun Chauhan, Anushka Kumari, Vanshika Minhas\",\"doi\":\"10.1007/s12010-025-05209-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05209-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05209-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Accelerating the Understanding of Biosensors Through the Lens of Cells: State of the Field, Emerging Directions, Advances, and Challenges.
Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.