通过细胞透镜加速对生物传感器的理解:该领域的现状、新兴方向、进展和挑战。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jasjeet Narang, Niket Rana, Arjun Chauhan, Anushka Kumari, Vanshika Minhas
{"title":"通过细胞透镜加速对生物传感器的理解:该领域的现状、新兴方向、进展和挑战。","authors":"Jasjeet Narang, Niket Rana, Arjun Chauhan, Anushka Kumari, Vanshika Minhas","doi":"10.1007/s12010-025-05209-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the Understanding of Biosensors Through the Lens of Cells: State of the Field, Emerging Directions, Advances, and Challenges.\",\"authors\":\"Jasjeet Narang, Niket Rana, Arjun Chauhan, Anushka Kumari, Vanshika Minhas\",\"doi\":\"10.1007/s12010-025-05209-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05209-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05209-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于细胞的生物传感器正在发展成为生物研究、药物开发和环境监测的多功能工具。这些生物传感器使用活细胞检测元素,与标准传感器相比具有显著优势。这篇综述文章旨在深入概述基于细胞的生物传感器,强调其工作原理、制造工艺和应用。活细胞对特定分析物或刺激物做出反应的潜力为细胞生物传感器的设计和运行提供了支持。通过将这些细胞与微电极或光学传感器等换能器相结合,可以实现实时和无标记识别。基因工程细胞或改变的微环境可用于细胞生物传感器,通过优化细胞类型以提高动态范围、灵敏度和选择性,从而改善性能。细胞生物传感器是通过精心培养细胞并将其固定在传感器表面,同时保持其活力和性能而开发出来的。细胞生物传感器应用广泛,包括环境监测、医疗保健和药物研究。这些生物传感器已被用于检测疾病、有毒物质、污染物和治疗药物筛选。基于细胞的生物传感器是一种尖端技术,它将活细胞和传感器的功能结合在一起,以灵敏和特异的方式检测分析物。这些生物传感器表明,随着制造方法和人工智能的进一步发展,未来在医疗保健和环境监测方面的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating the Understanding of Biosensors Through the Lens of Cells: State of the Field, Emerging Directions, Advances, and Challenges.

Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信