{"title":"用小角x射线散射研究了酚醛固化剂固化环氧树脂在有机膦催化剂下的交联不均匀性","authors":"Takeshi Kakara, Atsushi Izumi, Yasuyuki Shudo, Atsuomi Shundo, Keiji Tanaka","doi":"10.1038/s41428-024-00993-8","DOIUrl":null,"url":null,"abstract":"In this study, the crosslink inhomogeneities in two types of epoxy resins cured with a phenolic hardener under organophosphine catalysts were successfully clarified by small-angle X-ray scattering (SAXS) using a solvent-swelling technique. Herein, triphenylphosphine (TPP) and tetraphenylphosphonium tetra-p-tolylborate (TPPTTB) were investigated as the curing catalysts. The SAXS profiles in a fully tetrahydrofuran (THF)-swollen state clearly revealed a difference between the two types of resins. The profiles at the early, middle, and late stages of gelation were effectively explained by a sum of structural functions representing the crosslinking inhomogeneity and concentration fluctuations of the polymer chains. Furthermore, the change in the profiles indicated that the characteristic size of inhomogeneity was associated with the size of the minor, low-crosslink density region. The correlation lengths of the mesh size decreased to 1 nm for both resins. These results confirmed the formation of a well-developed crosslinked network structure. Moreover, the correlation lengths of the crosslink inhomogeneity at the late stage of gelation were 1 and 5 nm for the TPP- and TPPTTB-cured resins, respectively. Thus, the phenolic-cured epoxy resins using an organophosphine catalyst system exhibited a THF-swellable, low crosslink density region due to inhomogeneity at the late stage of gelation. This rapid communication reports the first successful clarification of the difference in the crosslink inhomogeneity at the nanometer scale for two types of structurally identical epoxy resins cured with a phenolic hardener under organophosphine catalysts.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 4","pages":"377-383"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00993-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Crosslink inhomogeneity in epoxy resins cured with a phenolic hardener under organophosphine catalysts revealed by small-angle X-ray scattering\",\"authors\":\"Takeshi Kakara, Atsushi Izumi, Yasuyuki Shudo, Atsuomi Shundo, Keiji Tanaka\",\"doi\":\"10.1038/s41428-024-00993-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the crosslink inhomogeneities in two types of epoxy resins cured with a phenolic hardener under organophosphine catalysts were successfully clarified by small-angle X-ray scattering (SAXS) using a solvent-swelling technique. Herein, triphenylphosphine (TPP) and tetraphenylphosphonium tetra-p-tolylborate (TPPTTB) were investigated as the curing catalysts. The SAXS profiles in a fully tetrahydrofuran (THF)-swollen state clearly revealed a difference between the two types of resins. The profiles at the early, middle, and late stages of gelation were effectively explained by a sum of structural functions representing the crosslinking inhomogeneity and concentration fluctuations of the polymer chains. Furthermore, the change in the profiles indicated that the characteristic size of inhomogeneity was associated with the size of the minor, low-crosslink density region. The correlation lengths of the mesh size decreased to 1 nm for both resins. These results confirmed the formation of a well-developed crosslinked network structure. Moreover, the correlation lengths of the crosslink inhomogeneity at the late stage of gelation were 1 and 5 nm for the TPP- and TPPTTB-cured resins, respectively. Thus, the phenolic-cured epoxy resins using an organophosphine catalyst system exhibited a THF-swellable, low crosslink density region due to inhomogeneity at the late stage of gelation. This rapid communication reports the first successful clarification of the difference in the crosslink inhomogeneity at the nanometer scale for two types of structurally identical epoxy resins cured with a phenolic hardener under organophosphine catalysts.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"57 4\",\"pages\":\"377-383\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41428-024-00993-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00993-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00993-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Crosslink inhomogeneity in epoxy resins cured with a phenolic hardener under organophosphine catalysts revealed by small-angle X-ray scattering
In this study, the crosslink inhomogeneities in two types of epoxy resins cured with a phenolic hardener under organophosphine catalysts were successfully clarified by small-angle X-ray scattering (SAXS) using a solvent-swelling technique. Herein, triphenylphosphine (TPP) and tetraphenylphosphonium tetra-p-tolylborate (TPPTTB) were investigated as the curing catalysts. The SAXS profiles in a fully tetrahydrofuran (THF)-swollen state clearly revealed a difference between the two types of resins. The profiles at the early, middle, and late stages of gelation were effectively explained by a sum of structural functions representing the crosslinking inhomogeneity and concentration fluctuations of the polymer chains. Furthermore, the change in the profiles indicated that the characteristic size of inhomogeneity was associated with the size of the minor, low-crosslink density region. The correlation lengths of the mesh size decreased to 1 nm for both resins. These results confirmed the formation of a well-developed crosslinked network structure. Moreover, the correlation lengths of the crosslink inhomogeneity at the late stage of gelation were 1 and 5 nm for the TPP- and TPPTTB-cured resins, respectively. Thus, the phenolic-cured epoxy resins using an organophosphine catalyst system exhibited a THF-swellable, low crosslink density region due to inhomogeneity at the late stage of gelation. This rapid communication reports the first successful clarification of the difference in the crosslink inhomogeneity at the nanometer scale for two types of structurally identical epoxy resins cured with a phenolic hardener under organophosphine catalysts.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.