Victor Bautista, Behnam Shahbazian, Mirmilad Mirsayar
{"title":"基于混合模timoshenko的功能梯度材料动态裂纹扩展周动力学","authors":"Victor Bautista, Behnam Shahbazian, Mirmilad Mirsayar","doi":"10.1111/ffe.14610","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A recently developed Timoshenko-based peridynamic model with a variable micropolar shear influence factor is extended to study the behavior of dynamic crack propagation in functionally graded materials (FGMs). To this end, first, the proposed model is validated against two experimental three-point bending benchmark problems with different material functions as well as varying loading rates and durations. Then, numerous additional cases with different boundary conditions and material distribution are studied to predict crack initiation and propagation in such mediums. The examples consist of three-point bending and Kalthoff–Winkler specimens with various material functions under dynamic loads. Finally, the effects of material anisotropy induced by functionally varying material properties on crack propagation path are addressed. It is shown that this new model is advantageous because of its capability to account for shear deformation effects in the bonds previously ignored by the original bond-based peridynamic models. Moreover, comparing the proposed modified bond-based model to more complex methods, such as state-based peridynamics, reveals that the simplicity of the current approach results in lower computational costs while still achieving comparable results.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2191-2205"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Mode Timoshenko-Based Peridynamics for Dynamic Crack Propagation in Functionally Graded Materials\",\"authors\":\"Victor Bautista, Behnam Shahbazian, Mirmilad Mirsayar\",\"doi\":\"10.1111/ffe.14610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A recently developed Timoshenko-based peridynamic model with a variable micropolar shear influence factor is extended to study the behavior of dynamic crack propagation in functionally graded materials (FGMs). To this end, first, the proposed model is validated against two experimental three-point bending benchmark problems with different material functions as well as varying loading rates and durations. Then, numerous additional cases with different boundary conditions and material distribution are studied to predict crack initiation and propagation in such mediums. The examples consist of three-point bending and Kalthoff–Winkler specimens with various material functions under dynamic loads. Finally, the effects of material anisotropy induced by functionally varying material properties on crack propagation path are addressed. It is shown that this new model is advantageous because of its capability to account for shear deformation effects in the bonds previously ignored by the original bond-based peridynamic models. Moreover, comparing the proposed modified bond-based model to more complex methods, such as state-based peridynamics, reveals that the simplicity of the current approach results in lower computational costs while still achieving comparable results.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 5\",\"pages\":\"2191-2205\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14610\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Mixed-Mode Timoshenko-Based Peridynamics for Dynamic Crack Propagation in Functionally Graded Materials
A recently developed Timoshenko-based peridynamic model with a variable micropolar shear influence factor is extended to study the behavior of dynamic crack propagation in functionally graded materials (FGMs). To this end, first, the proposed model is validated against two experimental three-point bending benchmark problems with different material functions as well as varying loading rates and durations. Then, numerous additional cases with different boundary conditions and material distribution are studied to predict crack initiation and propagation in such mediums. The examples consist of three-point bending and Kalthoff–Winkler specimens with various material functions under dynamic loads. Finally, the effects of material anisotropy induced by functionally varying material properties on crack propagation path are addressed. It is shown that this new model is advantageous because of its capability to account for shear deformation effects in the bonds previously ignored by the original bond-based peridynamic models. Moreover, comparing the proposed modified bond-based model to more complex methods, such as state-based peridynamics, reveals that the simplicity of the current approach results in lower computational costs while still achieving comparable results.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.