武东德水电站库区InSAR观测滑坡检测及变形控制分析

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Fan Wen, Chuang Song, Zhenhong Li, Chen Yu, Bo Chen, Jiantao Du, Zhenjiang Liu, Ying Wen
{"title":"武东德水电站库区InSAR观测滑坡检测及变形控制分析","authors":"Fan Wen,&nbsp;Chuang Song,&nbsp;Zhenhong Li,&nbsp;Chen Yu,&nbsp;Bo Chen,&nbsp;Jiantao Du,&nbsp;Zhenjiang Liu,&nbsp;Ying Wen","doi":"10.1029/2024EA004002","DOIUrl":null,"url":null,"abstract":"<p>After the construction of hydropower station, reservoir impoundment can directly affect the movement status of landslides within the reservoir area. Detecting landslides and revealing the relationship between landslide deformation and driving forces is crucial for reducing the threat of landslide hazards to residents and hydropower station in reservoir areas. In this study, active landslides in the reservoir areas of Wudongde Hydropower Station, were detected combining Interferometric Synthetic Aperture Radar observations and optical image interpretation. Through detailed verification and screening, we identified 128 landslides, most of which are located at an altitude of 1,000–2,000 m, with slopes of 20–35°. After reservoir impoundment, wading landslides were found to be more prone to change state than non-wading landslides. As the primary control factor of wading landslides, reservoir impoundment can either accelerate or decelerate landslide deformation depending on the equilibrium state between soil saturation and hydrostatic pressure. Furthermore, wavelet transform analysis indicates that rainfall and reservoir level significantly contribute to the seasonal oscillations of landslide deformation. The results of this study can contribute to the prevention of landslide hazards in the Wudongde reservoir area and other areas of the world where large hydropower stations have been constructed.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004002","citationCount":"0","resultStr":"{\"title\":\"Landslide Detection and Deformation Control Analysis in the Reservoir Area of Wudongde Hydropower Station by InSAR Observations\",\"authors\":\"Fan Wen,&nbsp;Chuang Song,&nbsp;Zhenhong Li,&nbsp;Chen Yu,&nbsp;Bo Chen,&nbsp;Jiantao Du,&nbsp;Zhenjiang Liu,&nbsp;Ying Wen\",\"doi\":\"10.1029/2024EA004002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>After the construction of hydropower station, reservoir impoundment can directly affect the movement status of landslides within the reservoir area. Detecting landslides and revealing the relationship between landslide deformation and driving forces is crucial for reducing the threat of landslide hazards to residents and hydropower station in reservoir areas. In this study, active landslides in the reservoir areas of Wudongde Hydropower Station, were detected combining Interferometric Synthetic Aperture Radar observations and optical image interpretation. Through detailed verification and screening, we identified 128 landslides, most of which are located at an altitude of 1,000–2,000 m, with slopes of 20–35°. After reservoir impoundment, wading landslides were found to be more prone to change state than non-wading landslides. As the primary control factor of wading landslides, reservoir impoundment can either accelerate or decelerate landslide deformation depending on the equilibrium state between soil saturation and hydrostatic pressure. Furthermore, wavelet transform analysis indicates that rainfall and reservoir level significantly contribute to the seasonal oscillations of landslide deformation. The results of this study can contribute to the prevention of landslide hazards in the Wudongde reservoir area and other areas of the world where large hydropower stations have been constructed.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004002\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004002","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

水电站建成后,水库蓄水会直接影响库区内滑坡的运动状态。对滑坡进行探测,揭示滑坡变形与驱动力之间的关系,对于减少滑坡灾害对库区居民和水电站的威胁至关重要。本文以武东德水电站库区为研究对象,结合干涉合成孔径雷达观测和光学图像解译,对库区活动滑坡进行了探测。通过详细的验证和筛选,我们确定了128个滑坡,其中大部分位于海拔1,000-2,000 m,坡度为20-35°。水库蓄水后,涉水滑坡比非涉水滑坡更容易发生状态变化。水库蓄水是涉水滑坡的主要控制因素,其作用取决于土体饱和与静水压力的平衡状态。此外,小波变换分析表明,降雨和水库水位对滑坡变形的季节振荡有显著影响。研究结果可为乌东德库区及世界其他大型水电站建设地区的滑坡灾害防治提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Landslide Detection and Deformation Control Analysis in the Reservoir Area of Wudongde Hydropower Station by InSAR Observations

Landslide Detection and Deformation Control Analysis in the Reservoir Area of Wudongde Hydropower Station by InSAR Observations

After the construction of hydropower station, reservoir impoundment can directly affect the movement status of landslides within the reservoir area. Detecting landslides and revealing the relationship between landslide deformation and driving forces is crucial for reducing the threat of landslide hazards to residents and hydropower station in reservoir areas. In this study, active landslides in the reservoir areas of Wudongde Hydropower Station, were detected combining Interferometric Synthetic Aperture Radar observations and optical image interpretation. Through detailed verification and screening, we identified 128 landslides, most of which are located at an altitude of 1,000–2,000 m, with slopes of 20–35°. After reservoir impoundment, wading landslides were found to be more prone to change state than non-wading landslides. As the primary control factor of wading landslides, reservoir impoundment can either accelerate or decelerate landslide deformation depending on the equilibrium state between soil saturation and hydrostatic pressure. Furthermore, wavelet transform analysis indicates that rainfall and reservoir level significantly contribute to the seasonal oscillations of landslide deformation. The results of this study can contribute to the prevention of landslide hazards in the Wudongde reservoir area and other areas of the world where large hydropower stations have been constructed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信