在中尺度上解释混凝土疲劳损伤:模型发展和参数分析

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Hui Jiang, Xiao Zhao, Yuan-De Zhou, Jin-Ting Wang, Xiu-Li Du, Yu Zhang
{"title":"在中尺度上解释混凝土疲劳损伤:模型发展和参数分析","authors":"Hui Jiang,&nbsp;Xiao Zhao,&nbsp;Yuan-De Zhou,&nbsp;Jin-Ting Wang,&nbsp;Xiu-Li Du,&nbsp;Yu Zhang","doi":"10.1111/ffe.14617","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a numerical framework for evaluating the fatigue damage behavior of concrete at the mesoscale. An equivalent stochastic mechanical model is introduced, accounting for inherent heterogeneity due to initial defects. The model is further enhanced by incorporating viscosity through linear damping elements within each element, and applying reasonable periodic boundary conditions. A practical numerical implementation strategy is developed within the framework of the ABAQUS finite element package for stress-controlled fatigue analysis, which incorporates the periodic boundary conditions. A series of fatigue numerical tests are performed under tensile loading conditions on representative random concrete specimens exhibiting varying degrees of heterogeneity. The results indicate that mesoscopic randomness significantly affects the progressive development of fatigue damage and ultimate failure patterns. The numerical model and implementation scheme serve as valuable tools for investigating fatigue mechanisms of concrete materials from a meso-mechanical perspective.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2325-2338"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpreting Concrete Fatigue Damage at the Mesoscale: Model Development and Parametric Analyses\",\"authors\":\"Hui Jiang,&nbsp;Xiao Zhao,&nbsp;Yuan-De Zhou,&nbsp;Jin-Ting Wang,&nbsp;Xiu-Li Du,&nbsp;Yu Zhang\",\"doi\":\"10.1111/ffe.14617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study presents a numerical framework for evaluating the fatigue damage behavior of concrete at the mesoscale. An equivalent stochastic mechanical model is introduced, accounting for inherent heterogeneity due to initial defects. The model is further enhanced by incorporating viscosity through linear damping elements within each element, and applying reasonable periodic boundary conditions. A practical numerical implementation strategy is developed within the framework of the ABAQUS finite element package for stress-controlled fatigue analysis, which incorporates the periodic boundary conditions. A series of fatigue numerical tests are performed under tensile loading conditions on representative random concrete specimens exhibiting varying degrees of heterogeneity. The results indicate that mesoscopic randomness significantly affects the progressive development of fatigue damage and ultimate failure patterns. The numerical model and implementation scheme serve as valuable tools for investigating fatigue mechanisms of concrete materials from a meso-mechanical perspective.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 5\",\"pages\":\"2325-2338\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14617\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14617","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种评估混凝土中尺度疲劳损伤行为的数值框架。引入了一种等效的随机力学模型,考虑了初始缺陷的固有异质性。通过在每个单元中加入线性阻尼单元,并应用合理的周期边界条件,进一步增强了模型的粘度。在ABAQUS有限元软件包的框架内开发了一种实用的应力控制疲劳分析数值实现策略,该策略包含周期边界条件。对具有代表性的具有不同程度非均质性的随机混凝土试件进行了拉伸加载条件下的疲劳数值试验。结果表明,细观随机性显著影响疲劳损伤的渐进发展和最终破坏模式。数值模型和实现方案为从细观力学角度研究混凝土材料的疲劳机理提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting Concrete Fatigue Damage at the Mesoscale: Model Development and Parametric Analyses

This study presents a numerical framework for evaluating the fatigue damage behavior of concrete at the mesoscale. An equivalent stochastic mechanical model is introduced, accounting for inherent heterogeneity due to initial defects. The model is further enhanced by incorporating viscosity through linear damping elements within each element, and applying reasonable periodic boundary conditions. A practical numerical implementation strategy is developed within the framework of the ABAQUS finite element package for stress-controlled fatigue analysis, which incorporates the periodic boundary conditions. A series of fatigue numerical tests are performed under tensile loading conditions on representative random concrete specimens exhibiting varying degrees of heterogeneity. The results indicate that mesoscopic randomness significantly affects the progressive development of fatigue damage and ultimate failure patterns. The numerical model and implementation scheme serve as valuable tools for investigating fatigue mechanisms of concrete materials from a meso-mechanical perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信