激光粉末床熔合(LPBF)法制备AlSi10Mg材料疲劳寿命的实验与计算研究

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Kiarash Jamali Dogahe, Tamás Csanádi, Yanling Schneider, Chensheng Xu, Vinzenz Guski, Anindita Dhar Swarna, Jan Dusza, Siegfried Schmauder, Zeljko Bozic, Mahmoud Pezeshki, Mohammad Ridzwan Bin Abd Rahim
{"title":"激光粉末床熔合(LPBF)法制备AlSi10Mg材料疲劳寿命的实验与计算研究","authors":"Kiarash Jamali Dogahe,&nbsp;Tamás Csanádi,&nbsp;Yanling Schneider,&nbsp;Chensheng Xu,&nbsp;Vinzenz Guski,&nbsp;Anindita Dhar Swarna,&nbsp;Jan Dusza,&nbsp;Siegfried Schmauder,&nbsp;Zeljko Bozic,&nbsp;Mahmoud Pezeshki,&nbsp;Mohammad Ridzwan Bin Abd Rahim","doi":"10.1111/ffe.14595","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the fatigue life of AlSi10Mg alloy produced by laser powder bed fusion (LPBF) using experimental and multiscale modeling methods. A micromodel developed based on EBSD and SEM data simulates fatigue microcrack nucleation with the Tanaka–Mura model and FEM. The effects of the alloys heterogeneous microstructure, including SiC particles, on fatigue crack initiation are examined. Micropillar tests and high-resolution SEM analyses study slip system behavior and plastic deformation. Long crack propagation is analyzed using the NASGRO equation, with total cycles till failure calculated for each stress amplitude. The fatigue life results, represented in an \n<span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>−</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$$ S-N $$</annotation>\n </semantics></math> curve, show good agreement between computational and experimental data. Microscopic and macroscopic features like second phases, grain sizes, orientations, and macropores significantly influence the fatigue life of LPBF materials.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2290-2308"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14595","citationCount":"0","resultStr":"{\"title\":\"Multicale Study of the Fatigue Life of AlSi10Mg Material Produced by Laser Powder Bed Fusion (LPBF) Method: Experimental and Computational\",\"authors\":\"Kiarash Jamali Dogahe,&nbsp;Tamás Csanádi,&nbsp;Yanling Schneider,&nbsp;Chensheng Xu,&nbsp;Vinzenz Guski,&nbsp;Anindita Dhar Swarna,&nbsp;Jan Dusza,&nbsp;Siegfried Schmauder,&nbsp;Zeljko Bozic,&nbsp;Mahmoud Pezeshki,&nbsp;Mohammad Ridzwan Bin Abd Rahim\",\"doi\":\"10.1111/ffe.14595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the fatigue life of AlSi10Mg alloy produced by laser powder bed fusion (LPBF) using experimental and multiscale modeling methods. A micromodel developed based on EBSD and SEM data simulates fatigue microcrack nucleation with the Tanaka–Mura model and FEM. The effects of the alloys heterogeneous microstructure, including SiC particles, on fatigue crack initiation are examined. Micropillar tests and high-resolution SEM analyses study slip system behavior and plastic deformation. Long crack propagation is analyzed using the NASGRO equation, with total cycles till failure calculated for each stress amplitude. The fatigue life results, represented in an \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>−</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ S-N $$</annotation>\\n </semantics></math> curve, show good agreement between computational and experimental data. Microscopic and macroscopic features like second phases, grain sizes, orientations, and macropores significantly influence the fatigue life of LPBF materials.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 5\",\"pages\":\"2290-2308\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14595\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14595\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用实验和多尺度建模方法研究了激光粉末床熔合AlSi10Mg合金的疲劳寿命。基于EBSD和SEM数据建立的微模型采用Tanaka-Mura模型和FEM模拟了疲劳微裂纹的形核。研究了含SiC颗粒的合金异质组织对疲劳裂纹萌生的影响。微柱试验和高分辨率扫描电镜分析研究滑移系统的行为和塑性变形。采用NASGRO方程对长裂纹扩展进行了分析,并计算了每个应力幅值的总循环次数。疲劳寿命计算结果用S−N $$ S-N $$曲线表示,与实验结果吻合较好。第二相、晶粒尺寸、取向和大孔隙等微观和宏观特征显著影响LPBF材料的疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multicale Study of the Fatigue Life of AlSi10Mg Material Produced by Laser Powder Bed Fusion (LPBF) Method: Experimental and Computational

Multicale Study of the Fatigue Life of AlSi10Mg Material Produced by Laser Powder Bed Fusion (LPBF) Method: Experimental and Computational

This study investigates the fatigue life of AlSi10Mg alloy produced by laser powder bed fusion (LPBF) using experimental and multiscale modeling methods. A micromodel developed based on EBSD and SEM data simulates fatigue microcrack nucleation with the Tanaka–Mura model and FEM. The effects of the alloys heterogeneous microstructure, including SiC particles, on fatigue crack initiation are examined. Micropillar tests and high-resolution SEM analyses study slip system behavior and plastic deformation. Long crack propagation is analyzed using the NASGRO equation, with total cycles till failure calculated for each stress amplitude. The fatigue life results, represented in an S N $$ S-N $$ curve, show good agreement between computational and experimental data. Microscopic and macroscopic features like second phases, grain sizes, orientations, and macropores significantly influence the fatigue life of LPBF materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信