Mei Guo, Haolin Gao, Yue Liu, Weitao Song, Songyue Yang, Yongtian Wang
{"title":"虚拟现实中舒适交互深度感知的实验研究","authors":"Mei Guo, Haolin Gao, Yue Liu, Weitao Song, Songyue Yang, Yongtian Wang","doi":"10.1002/jsid.2030","DOIUrl":null,"url":null,"abstract":"<p>Virtual reality (VR) displays aim to create highly immersive virtual environments based on the principle of binocular disparity, which reproduces spatial information of virtual scenes through the fusion processing of binocular disparity by the visual system. However, due to the differences between VR displays and real-world scenes, the challenge of rendering in VR displays in a manner that aligns with users' natural depth perception principles has not been fully addressed. In this paper, the virtual image distances (VIDs) of RGB channels in head-mounted display (HMD) were measured and a depth perception experiment based on random dot stereograms (RDS) according to the measured VID values was designed. The depth perception comfort fusion thresholds in VR systems were determined by psychophysical methods, and the results demonstrate that the comfort fusion threshold for uncrossed disparity is significantly lower than that for crossed disparity. Additionally, user interaction performance in the determined virtual depth scenarios showed a 12.94% reduction in reaction time and a 16.86% improvement in accuracy compared to other virtual depths. Our findings provide further understanding of comfortable depth visual presentation in VR displays, which is crucial for enhancing user experience and promoting the widespread adoption of VR technology across various applications.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":"33 4","pages":"263-273"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental research on depth perception of comfortable interactions in virtual reality\",\"authors\":\"Mei Guo, Haolin Gao, Yue Liu, Weitao Song, Songyue Yang, Yongtian Wang\",\"doi\":\"10.1002/jsid.2030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Virtual reality (VR) displays aim to create highly immersive virtual environments based on the principle of binocular disparity, which reproduces spatial information of virtual scenes through the fusion processing of binocular disparity by the visual system. However, due to the differences between VR displays and real-world scenes, the challenge of rendering in VR displays in a manner that aligns with users' natural depth perception principles has not been fully addressed. In this paper, the virtual image distances (VIDs) of RGB channels in head-mounted display (HMD) were measured and a depth perception experiment based on random dot stereograms (RDS) according to the measured VID values was designed. The depth perception comfort fusion thresholds in VR systems were determined by psychophysical methods, and the results demonstrate that the comfort fusion threshold for uncrossed disparity is significantly lower than that for crossed disparity. Additionally, user interaction performance in the determined virtual depth scenarios showed a 12.94% reduction in reaction time and a 16.86% improvement in accuracy compared to other virtual depths. Our findings provide further understanding of comfortable depth visual presentation in VR displays, which is crucial for enhancing user experience and promoting the widespread adoption of VR technology across various applications.</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":\"33 4\",\"pages\":\"263-273\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.2030\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.2030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Experimental research on depth perception of comfortable interactions in virtual reality
Virtual reality (VR) displays aim to create highly immersive virtual environments based on the principle of binocular disparity, which reproduces spatial information of virtual scenes through the fusion processing of binocular disparity by the visual system. However, due to the differences between VR displays and real-world scenes, the challenge of rendering in VR displays in a manner that aligns with users' natural depth perception principles has not been fully addressed. In this paper, the virtual image distances (VIDs) of RGB channels in head-mounted display (HMD) were measured and a depth perception experiment based on random dot stereograms (RDS) according to the measured VID values was designed. The depth perception comfort fusion thresholds in VR systems were determined by psychophysical methods, and the results demonstrate that the comfort fusion threshold for uncrossed disparity is significantly lower than that for crossed disparity. Additionally, user interaction performance in the determined virtual depth scenarios showed a 12.94% reduction in reaction time and a 16.86% improvement in accuracy compared to other virtual depths. Our findings provide further understanding of comfortable depth visual presentation in VR displays, which is crucial for enhancing user experience and promoting the widespread adoption of VR technology across various applications.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.