Yifan Wang, Evmorfia Aivalioti, Kimon Stamatelopoulos, Georgios Zervas, Martin Bødtker Mortensen, Marianne Zeller, Luca Liberale, Davide Di Vece, Victor Schweiger, Giovanni G. Camici, Thomas F. Lüscher, Simon Kraler
{"title":"心血管风险评估中的机器学习:迈向精准医学方法","authors":"Yifan Wang, Evmorfia Aivalioti, Kimon Stamatelopoulos, Georgios Zervas, Martin Bødtker Mortensen, Marianne Zeller, Luca Liberale, Davide Di Vece, Victor Schweiger, Giovanni G. Camici, Thomas F. Lüscher, Simon Kraler","doi":"10.1111/eci.70017","DOIUrl":null,"url":null,"abstract":"<p>Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.</p>","PeriodicalId":12013,"journal":{"name":"European Journal of Clinical Investigation","volume":"55 S1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning in cardiovascular risk assessment: Towards a precision medicine approach\",\"authors\":\"Yifan Wang, Evmorfia Aivalioti, Kimon Stamatelopoulos, Georgios Zervas, Martin Bødtker Mortensen, Marianne Zeller, Luca Liberale, Davide Di Vece, Victor Schweiger, Giovanni G. Camici, Thomas F. Lüscher, Simon Kraler\",\"doi\":\"10.1111/eci.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.</p>\",\"PeriodicalId\":12013,\"journal\":{\"name\":\"European Journal of Clinical Investigation\",\"volume\":\"55 S1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eci.70017\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eci.70017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Machine learning in cardiovascular risk assessment: Towards a precision medicine approach
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
期刊介绍:
EJCI considers any original contribution from the most sophisticated basic molecular sciences to applied clinical and translational research and evidence-based medicine across a broad range of subspecialties. The EJCI publishes reports of high-quality research that pertain to the genetic, molecular, cellular, or physiological basis of human biology and disease, as well as research that addresses prevalence, diagnosis, course, treatment, and prevention of disease. We are primarily interested in studies directly pertinent to humans, but submission of robust in vitro and animal work is also encouraged. Interdisciplinary work and research using innovative methods and combinations of laboratory, clinical, and epidemiological methodologies and techniques is of great interest to the journal. Several categories of manuscripts (for detailed description see below) are considered: editorials, original articles (also including randomized clinical trials, systematic reviews and meta-analyses), reviews (narrative reviews), opinion articles (including debates, perspectives and commentaries); and letters to the Editor.