基于Kitagawa-Takahashi和概率蠕变孔隙模型的蠕变-疲劳相互作用新模型

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Tuan Duc Nguyen, Oliver Jordan, Lucas Maede, Tilmann Beck, Dirk Kulawinski
{"title":"基于Kitagawa-Takahashi和概率蠕变孔隙模型的蠕变-疲劳相互作用新模型","authors":"Tuan Duc Nguyen,&nbsp;Oliver Jordan,&nbsp;Lucas Maede,&nbsp;Tilmann Beck,&nbsp;Dirk Kulawinski","doi":"10.1111/ffe.14550","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Kitagawa–Takahashi (KT) diagram and the El Haddad equation are widely used to predict the allowable stress range \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>σ</mi>\n </mrow>\n <annotation>$$ \\Delta \\sigma $$</annotation>\n </semantics></math> for an internal defect size \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation>$$ a $$</annotation>\n </semantics></math>. This approach discriminates between regions designating nonpropagation and propagation of short and long cracks. However, the KT diagram is incapable of describing the damage under creep conditions, as in that case, the assumption of a time-independent threshold for fatigue crack propagation is invalid and must be considered as time dependent. The proposed Kitagawa–Takahashi with creep (KTC) method combines pore size distributions predicted by a probabilistic creep pore model with the El Haddad equation. This new approach is suitable to characterize the interaction of creep–fatigue loading. Within this work, modified Wöhler and Haigh diagrams for creep–fatigue at various temperatures are presented and validated with creep–fatigue experiments as well as high-cycle fatigue (HCF) tests on precrept specimens made from the polycrystalline nickel-base superalloy 247.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2009-2021"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Creep–Fatigue Interaction Model Based on Kitagawa–Takahashi and a Probabilistic Creep Pore Model\",\"authors\":\"Tuan Duc Nguyen,&nbsp;Oliver Jordan,&nbsp;Lucas Maede,&nbsp;Tilmann Beck,&nbsp;Dirk Kulawinski\",\"doi\":\"10.1111/ffe.14550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Kitagawa–Takahashi (KT) diagram and the El Haddad equation are widely used to predict the allowable stress range \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$$ \\\\Delta \\\\sigma $$</annotation>\\n </semantics></math> for an internal defect size \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <annotation>$$ a $$</annotation>\\n </semantics></math>. This approach discriminates between regions designating nonpropagation and propagation of short and long cracks. However, the KT diagram is incapable of describing the damage under creep conditions, as in that case, the assumption of a time-independent threshold for fatigue crack propagation is invalid and must be considered as time dependent. The proposed Kitagawa–Takahashi with creep (KTC) method combines pore size distributions predicted by a probabilistic creep pore model with the El Haddad equation. This new approach is suitable to characterize the interaction of creep–fatigue loading. Within this work, modified Wöhler and Haigh diagrams for creep–fatigue at various temperatures are presented and validated with creep–fatigue experiments as well as high-cycle fatigue (HCF) tests on precrept specimens made from the polycrystalline nickel-base superalloy 247.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 5\",\"pages\":\"2009-2021\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14550\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

Kitagawa-Takahashi (KT)图和El Haddad方程被广泛用于预测内部缺陷尺寸为a $$ a $$的许用应力范围Δ σ $$ \Delta \sigma $$。这种方法区分了短裂缝和长裂缝的非扩展区和扩展区。然而,KT图不能描述蠕变条件下的损伤,因为在这种情况下,疲劳裂纹扩展的时间无关阈值的假设是无效的,必须考虑时间相关。提出的Kitagawa-Takahashi with creep (KTC)方法将概率蠕变孔隙模型预测的孔隙尺寸分布与El Haddad方程相结合。该方法适用于蠕变-疲劳载荷相互作用的表征。在这项工作中,提出了不同温度下蠕变疲劳的修改Wöhler和Haigh图,并通过蠕变疲劳实验以及由多晶镍基高温合金247制成的预蠕变试样的高周疲劳(HCF)测试进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Creep–Fatigue Interaction Model Based on Kitagawa–Takahashi and a Probabilistic Creep Pore Model

The Kitagawa–Takahashi (KT) diagram and the El Haddad equation are widely used to predict the allowable stress range Δ σ $$ \Delta \sigma $$ for an internal defect size a $$ a $$ . This approach discriminates between regions designating nonpropagation and propagation of short and long cracks. However, the KT diagram is incapable of describing the damage under creep conditions, as in that case, the assumption of a time-independent threshold for fatigue crack propagation is invalid and must be considered as time dependent. The proposed Kitagawa–Takahashi with creep (KTC) method combines pore size distributions predicted by a probabilistic creep pore model with the El Haddad equation. This new approach is suitable to characterize the interaction of creep–fatigue loading. Within this work, modified Wöhler and Haigh diagrams for creep–fatigue at various temperatures are presented and validated with creep–fatigue experiments as well as high-cycle fatigue (HCF) tests on precrept specimens made from the polycrystalline nickel-base superalloy 247.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信