Mohamed M. Elsenety, Christos Falaras, Elias Stathatos, Yunjuan Niu, Linhua Hu
{"title":"Optimization and Scalability of Polymer-Modified PSCs Investigated by Machine Learning","authors":"Mohamed M. Elsenety,&nbsp;Christos Falaras,&nbsp;Elias Stathatos,&nbsp;Yunjuan Niu,&nbsp;Linhua Hu","doi":"10.1002/appl.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Advanced engineering strategies are employed to optimize the performance of perovskite solar cells (PSCs). In this study, the introduction of polyvinylpyrrolidone (PVP) to the MAPbI<sub>3</sub> perovskite precursor results in PSCs presenting self-healing ability in a moisture environment and power conversion efficiency (PCE) of up to 20.35%. We utilize machine learning to correlate comprehensive J–V experimental data with corresponding photovoltaic parameters. We identify key factors and correlations of J<sub>sc</sub>, FF, and V<sub>oc</sub> that primarily influence the PCE and scalability of polymer-modified PSCs. The findings indicated that the correlation between PCE and active area (AE) drops from 40% in reference cells to approximately 1% in the modified cells with PVP, justifying the scale-up potential of the modified approach. This is not the case for untreated devices, where PCE is largely affected by shunt (R<sub>sh</sub>) and series (R<sub>s</sub>) resistances. We evaluated 25 different algorithms through cross-validation, with the Gaussian Process emerging as the best-performing model, achieving an <i>R</i><sup>2</sup> of 0.94 and minimal errors. This model/algorithm was applied to optimize the fabrication process by predicting the optimal amount of PVP, which was determined to be 4.5 mg/L, and predicting the corresponding current–voltage (J–V) characteristics as well. This study offers a robust framework for systematically designing and optimizing durable and scalable polymer-modified PSCs, advancing the field of third-generation photovoltaic technology.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们采用先进的工程策略来优化过氧化物太阳能电池(PSCs)的性能。在本研究中,通过在 MAPbI3 包晶前驱体中引入聚乙烯吡咯烷酮(PVP),使 PSC 在潮湿环境中具有自愈能力,功率转换效率(PCE)高达 20.35%。我们利用机器学习将全面的 J-V 实验数据与相应的光伏参数关联起来。我们确定了主要影响聚合物改性 PSC 的 PCE 和可扩展性的关键因素以及 Jsc、FF 和 Voc 的相关性。研究结果表明,PCE 与有效面积 (AE) 之间的相关性从参考电池的 40% 下降到使用 PVP 改性电池的约 1%,这证明了改性方法的扩展潜力。而未经处理的设备则不然,其 PCE 主要受并联电阻 (Rsh) 和串联电阻 (Rs) 的影响。我们通过交叉验证评估了 25 种不同的算法,其中高斯过程是性能最好的模型,R2 为 0.94,误差最小。通过预测 PVP 的最佳用量(确定为 4.5 毫克/升)以及预测相应的电流-电压 (J-V) 特性,该模型/算法被用于优化制造工艺。这项研究为系统设计和优化耐用且可扩展的聚合物改性 PSCs 提供了一个稳健的框架,推动了第三代光伏技术领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and Scalability of Polymer-Modified PSCs Investigated by Machine Learning

Advanced engineering strategies are employed to optimize the performance of perovskite solar cells (PSCs). In this study, the introduction of polyvinylpyrrolidone (PVP) to the MAPbI3 perovskite precursor results in PSCs presenting self-healing ability in a moisture environment and power conversion efficiency (PCE) of up to 20.35%. We utilize machine learning to correlate comprehensive J–V experimental data with corresponding photovoltaic parameters. We identify key factors and correlations of Jsc, FF, and Voc that primarily influence the PCE and scalability of polymer-modified PSCs. The findings indicated that the correlation between PCE and active area (AE) drops from 40% in reference cells to approximately 1% in the modified cells with PVP, justifying the scale-up potential of the modified approach. This is not the case for untreated devices, where PCE is largely affected by shunt (Rsh) and series (Rs) resistances. We evaluated 25 different algorithms through cross-validation, with the Gaussian Process emerging as the best-performing model, achieving an R2 of 0.94 and minimal errors. This model/algorithm was applied to optimize the fabrication process by predicting the optimal amount of PVP, which was determined to be 4.5 mg/L, and predicting the corresponding current–voltage (J–V) characteristics as well. This study offers a robust framework for systematically designing and optimizing durable and scalable polymer-modified PSCs, advancing the field of third-generation photovoltaic technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信