纳米材料原位透射电镜简易拉伸测试平台

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bengisu Sari, Medha Dandu, Nathan Wood, Jacob Hochhalter, Amalya C. Johnson, Marca Doeff, Fang Liu, Archana Raja, Mary Scott, Rohan Dhall, Roseanne Warren
{"title":"纳米材料原位透射电镜简易拉伸测试平台","authors":"Bengisu Sari,&nbsp;Medha Dandu,&nbsp;Nathan Wood,&nbsp;Jacob Hochhalter,&nbsp;Amalya C. Johnson,&nbsp;Marca Doeff,&nbsp;Fang Liu,&nbsp;Archana Raja,&nbsp;Mary Scott,&nbsp;Rohan Dhall,&nbsp;Roseanne Warren","doi":"10.1002/admi.202400750","DOIUrl":null,"url":null,"abstract":"<p>In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400750","citationCount":"0","resultStr":"{\"title\":\"Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials\",\"authors\":\"Bengisu Sari,&nbsp;Medha Dandu,&nbsp;Nathan Wood,&nbsp;Jacob Hochhalter,&nbsp;Amalya C. Johnson,&nbsp;Marca Doeff,&nbsp;Fang Liu,&nbsp;Archana Raja,&nbsp;Mary Scott,&nbsp;Rohan Dhall,&nbsp;Roseanne Warren\",\"doi\":\"10.1002/admi.202400750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400750\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400750\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400750","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用透射电子显微镜(TEM)进行原位拉伸测试是一种在原子尺度上探测材料结构-性能关系的有力技术。在这项工作中,演示了一种在透射电子显微镜内进行材料原位表征的简易拉伸测试平台。该平台包括:1)商用的、柔性的、电子透明的衬底(例如,TEM网格)与传统的拉伸测试支架集成,以及2)提供试样施加应变量化的有限元模拟。柔性衬底(TEM网格的碳支撑膜)减轻了通常在独立薄膜中发现的应变浓度,并使原位应变实验能够在不能进行局部变薄或聚焦离子束提升的材料上进行。有限元模拟使支架位移与样品应变直接相关,提供了整个基板的预期应变的上限和下限。通过测量实验记录的电子衍射数据的晶格应变,对三种不同的材料体系进行了拉伸测试平台的验证:溅射金钯,少层转移二硫化钨和电沉积锂。实验结果与模拟结果吻合良好,为将应变从支架传递到样品以及将TEM晶体结构观察与材料力学性能联系起来提供了信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials

Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials

In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信