Bengisu Sari, Medha Dandu, Nathan Wood, Jacob Hochhalter, Amalya C. Johnson, Marca Doeff, Fang Liu, Archana Raja, Mary Scott, Rohan Dhall, Roseanne Warren
{"title":"纳米材料原位透射电镜简易拉伸测试平台","authors":"Bengisu Sari, Medha Dandu, Nathan Wood, Jacob Hochhalter, Amalya C. Johnson, Marca Doeff, Fang Liu, Archana Raja, Mary Scott, Rohan Dhall, Roseanne Warren","doi":"10.1002/admi.202400750","DOIUrl":null,"url":null,"abstract":"<p>In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400750","citationCount":"0","resultStr":"{\"title\":\"Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials\",\"authors\":\"Bengisu Sari, Medha Dandu, Nathan Wood, Jacob Hochhalter, Amalya C. Johnson, Marca Doeff, Fang Liu, Archana Raja, Mary Scott, Rohan Dhall, Roseanne Warren\",\"doi\":\"10.1002/admi.202400750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400750\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400750\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400750","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile Tensile Testing Platform for In Situ Transmission Electron Microscopy of Nanomaterials
In situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure-property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron-transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen-applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free-standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift-out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold-palladium, few-layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.