原子精确Cu6纳米团簇用于析氧催化:实验与理论的结合研究

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Meng-Yao Chen, Long-Yun Shen, Lu-Bing Qin, Francesco Ciucci, Zheng-Hua Tang
{"title":"原子精确Cu6纳米团簇用于析氧催化:实验与理论的结合研究","authors":"Meng-Yao Chen,&nbsp;Long-Yun Shen,&nbsp;Lu-Bing Qin,&nbsp;Francesco Ciucci,&nbsp;Zheng-Hua Tang","doi":"10.1007/s12598-024-03055-3","DOIUrl":null,"url":null,"abstract":"<div><p>Cu-based nanomaterials have demonstrated great potential as efficient and economic catalysts for oxygen evolution reaction (OER), yet an ideal model catalyst with definitive composition and well-defined structure is still lacking for understanding the structure–performance relationship at atomical level. Herein, we report the synthesis, structure analysis, and OER catalytic properties of a novel atomically precise Cu nanocluster of [Cu<sub>6</sub>(C≡CR)<sub>4</sub>(dppe)<sub>3</sub>] (R = Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>, abbreviated as Cu<sub>6</sub>NC). Cu<sub>6</sub>NC possesses a unique metal core configuration and metal–ligand binding motifs. Interestingly, Cu<sub>6</sub>NC has superior OER performance to pure phosphine ligand-protected Cu<sub>18</sub> nanocluster (Cu<sub>18</sub>NC in short, same Cu amount) and Cu nanoparticle (CuNP) with larger size, manifested by the lower overpotential at 10 mA·cm<sup>−2</sup>, smaller Tafel slope, and reduced charge transfer resistance. Cu<sub>6</sub>NC also demonstrated excellent long-term stability for prolonged operation. Density functional theory (DFT) calculations further confirm that the alkynyl ligand plays a critical role in promoting the catalytic performance, and Cu<sub>6</sub>NC has a lower energy barrier in the rate-determining step of the OER process. This study not only highlights the unique advantages of employing ultrasmall Cu nanoclusters for OER, but also can shed light on designing ligand-functionalized metal nanoclusters for electrochemical energy conversion and beyond.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 4","pages":"2428 - 2437"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically precise Cu6 nanoclusters for oxygen evolution catalysis: a combined experimental and theoretical study\",\"authors\":\"Meng-Yao Chen,&nbsp;Long-Yun Shen,&nbsp;Lu-Bing Qin,&nbsp;Francesco Ciucci,&nbsp;Zheng-Hua Tang\",\"doi\":\"10.1007/s12598-024-03055-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cu-based nanomaterials have demonstrated great potential as efficient and economic catalysts for oxygen evolution reaction (OER), yet an ideal model catalyst with definitive composition and well-defined structure is still lacking for understanding the structure–performance relationship at atomical level. Herein, we report the synthesis, structure analysis, and OER catalytic properties of a novel atomically precise Cu nanocluster of [Cu<sub>6</sub>(C≡CR)<sub>4</sub>(dppe)<sub>3</sub>] (R = Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>, abbreviated as Cu<sub>6</sub>NC). Cu<sub>6</sub>NC possesses a unique metal core configuration and metal–ligand binding motifs. Interestingly, Cu<sub>6</sub>NC has superior OER performance to pure phosphine ligand-protected Cu<sub>18</sub> nanocluster (Cu<sub>18</sub>NC in short, same Cu amount) and Cu nanoparticle (CuNP) with larger size, manifested by the lower overpotential at 10 mA·cm<sup>−2</sup>, smaller Tafel slope, and reduced charge transfer resistance. Cu<sub>6</sub>NC also demonstrated excellent long-term stability for prolonged operation. Density functional theory (DFT) calculations further confirm that the alkynyl ligand plays a critical role in promoting the catalytic performance, and Cu<sub>6</sub>NC has a lower energy barrier in the rate-determining step of the OER process. This study not only highlights the unique advantages of employing ultrasmall Cu nanoclusters for OER, but also can shed light on designing ligand-functionalized metal nanoclusters for electrochemical energy conversion and beyond.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 4\",\"pages\":\"2428 - 2437\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03055-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03055-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜基纳米材料作为高效、经济的析氧反应催化剂已显示出巨大的潜力,但在原子水平上理解析氧反应的结构与性能关系,还缺乏具有明确组成和明确结构的理想模型催化剂。在此,我们报道了一种新型原子精密铜纳米团簇[Cu6(C≡CR)4(dppe)3] (R = Fe(C5H5)2,缩写为Cu6NC)的合成、结构分析和OER催化性能。Cu6NC具有独特的金属核结构和金属配体结合基序。有趣的是,Cu6NC的OER性能优于纯磷化氢配体保护的Cu18纳米团簇(简称Cu18NC, Cu量相同)和较大尺寸的Cu纳米颗粒(CuNP),表现为10 mA·cm−2过电位更低,Tafel斜率更小,电荷转移电阻更小。Cu6NC在长时间运行中也表现出优异的长期稳定性。密度泛函理论(DFT)计算进一步证实了炔基配体对促进催化性能起着关键作用,并且在OER过程的速率决定步骤中,Cu6NC具有较低的能垒。该研究不仅突出了超小铜纳米团簇用于OER的独特优势,而且为设计用于电化学能量转换等领域的配体功能化金属纳米团簇提供了思路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomically precise Cu6 nanoclusters for oxygen evolution catalysis: a combined experimental and theoretical study

Cu-based nanomaterials have demonstrated great potential as efficient and economic catalysts for oxygen evolution reaction (OER), yet an ideal model catalyst with definitive composition and well-defined structure is still lacking for understanding the structure–performance relationship at atomical level. Herein, we report the synthesis, structure analysis, and OER catalytic properties of a novel atomically precise Cu nanocluster of [Cu6(C≡CR)4(dppe)3] (R = Fe(C5H5)2, abbreviated as Cu6NC). Cu6NC possesses a unique metal core configuration and metal–ligand binding motifs. Interestingly, Cu6NC has superior OER performance to pure phosphine ligand-protected Cu18 nanocluster (Cu18NC in short, same Cu amount) and Cu nanoparticle (CuNP) with larger size, manifested by the lower overpotential at 10 mA·cm−2, smaller Tafel slope, and reduced charge transfer resistance. Cu6NC also demonstrated excellent long-term stability for prolonged operation. Density functional theory (DFT) calculations further confirm that the alkynyl ligand plays a critical role in promoting the catalytic performance, and Cu6NC has a lower energy barrier in the rate-determining step of the OER process. This study not only highlights the unique advantages of employing ultrasmall Cu nanoclusters for OER, but also can shed light on designing ligand-functionalized metal nanoclusters for electrochemical energy conversion and beyond.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信